Как выучить таблицу интегралов
Перейти к содержимому

Как выучить таблицу интегралов

  • автор:

Как запоминать формулы

Студентам изучающим математику приходится учить формулы наизусть. Конечно, во многих случаях можно обойтись справочником, но есть случаи когда формулы все-таки лучше выучить. В качестве примеров можно привести таблицу производных и таблицу интегралов. Эти формулы должны быть загружены в «оперативную» память студента. Только если есть цельная картина и знание этих формул, можно научить правильно и быстро находить производные и интегралы. Более того, эти формулы надо помнить долго, а не только на экзамен или зачет — многие курсы для студентов инженерных специальностей подразумевают, что вы умеете дифференцировать и интегрировать.

Для того, чтобы запомнить формулы каждый придумывает свои методы. У кого-то отличная зрительная память, кто-то хорошо воспринимает все на слух, а кому-то надо записывать и тогда все легко запоминается. Хорошо известно, что если формулы у вас постоянно перед глазами, то запомните вы их подсознательно и надолго. Распечатайте себе плакат с таблицей производных и повесьте над кроватью. Во-первых, все будут постоянно вас спрашивать и вы будете в центре внимания. Особенно уважительно будут на вас смотреть девушки. Во-вторых, комендант общежития (ничего не понимающий в математике) будет обходить вас десятой дорогой. В-третьих, если придет с проверкой декан в общежитие, то у вас будет предмет для обсуждения — таблица интегралов и декан сразу поймет что вы приличный студент, а не бездельник и ругать вас за бардак в комнате скорее всего не будут. Всем понятно, что вы заняты учебой, вот и не убрали в комнате.

Интегралы – что это, как решать, примеры решений и объяснение для чайников

Интегралы – что это, как решать, примеры решений и объяснение для чайников

А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос.

Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения. Среди них:

  • вычисление площади фигуры.
  • вычисление массы тела с неравномерной плотностью.
  • определение пройденного пути при движении с непостоянной скоростью.
  • и др.

Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.

Главная причина незнания – отсутствие понимания практической значимости интегралов.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Интеграл – что это?

Предпосылки. Потребность в интегрировании возникла в Древней Греции. В то время Архимед начал применять для нахождения площади окружности методы, похожие по сути на современные интегральные исчисления. Основным подходом для определения площади неровных фигур тогда был «Метод исчерпывания», который достаточно лёгок для понимания.

Суть метода. В данную фигуру вписывается монотонная последовательность других фигур, а затем вычисляется предел последовательности их площадей. Этот предел и принимался за площадь данной фигуры.

Метод исчерпывания для определения площади круга

Метод исчерпывания для определения площади круга

В этом методе легко прослеживается идея интегрального исчисления, которая заключается в нахождении предела бесконечной суммы. В дальнейшем эта идея применялась учёными для решения прикладных задач астронавтики, экономики, механики и др.

Современный интеграл. Классическая теория интегрирования была сформулирована в общем виде Ньютоном и Лейбницем. Она опиралась на существовавшие тогда законы дифференциального исчисления. Для её понимания, необходимо иметь некоторые базовые знания, которые помогут математическим языком описать визуальные и интуитивные представления об интегралах.

Объясняем понятие «Интеграл»

Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием.

Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».

Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.

Интеграл записывается так:

Типовая подынтегральная функция

Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).

Неопределённый интеграл

Неопределенный интеграл не имеет границ интегрирования.

Для решения неопределённых интегралов достаточно найти первообразную подынтегральной функции и прибавить к ней «C».

Определённый интеграл

В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.

Точки A и B на оси X – есть ограничение зоны определения интеграла

Точки A и B на оси X – есть ограничение зоны определения интеграла

Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:

Формула Ньютона-Лейбница

Таблица интегралов для студентов (основные формулы)

Таблица интегралов

Скачайте формулы интегралов, они вам еще пригодятся

Как вычислять интеграл правильно

Существует несколько простейших операций для преобразования интегралов. Вот основные из них:

Вынесение константы из-под знака интеграла

Вынесение константы

Разложение интеграла суммы на сумму интегралов

Разложение суммы

Если поменять местами a и b, знак изменится

Изменение знака

Можно разбить интеграл на промежутки следующим образом

Разбиение на промежутки

Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.

Примеры вычисления интегралов

Решение неопределенного интеграла

Примеры вычисления неопределённых интегралов

Решение определенного интеграла

Пример вычисления определённого интеграла

Базовые понятия для понимания темы

Чтобы вы поняли суть интегрирования и не закрыли страницу от непонимания, мы объясним ряд базовых понятий. Что такое функция, производная, предел и первообразная.

Функция – правило, по которому все элементы из одного множества соотносятся со всеми элементами из другого.

Производная – функция, описывающая скорость изменения другой функции в каждой конкретной точке. Если говорить строгим языком, – это предел отношения приращения функции к приращению аргумента. Он вычисляется вручную, но проще использовать таблицу производных, в которой собрано большинство стандартных функций.

Приращение – количественное изменение функции при некотором изменении аргумента.

Предел – величина, к которой стремиться значение функции, при стремлении аргумента к определённому значению.

Пример предела: допустим при X равном 1, Y будет равно 2. Но что, если X не равен 1, а стремится к 1, то есть никогда её не достигает? В этом случае y никогда не достигнет 2, а будет только стремиться к этой величине. На математическом языке это записывается так: limY(X), при X –> 1 = 2. Читается: предел функции Y(X), при x стремящемся к 1, равен 2.

Как уже было сказано, производная – это функция, описывающая другую функцию. Изначальная функция может быть производной для какой-либо другой функции. Эта другая функция называется первообразной.

Заключение

Найти интегралы не трудно. Если вы не поняли, как это делать, прочитайте статью еще раз. Со второго раза становится понятнее. Запомните! Решение интегралов сводится к простым преобразованиям подынтегральной функции и поиска её в таблице интегралов.

Если текстовое объяснение вам не заходит, посмотрите видео о смысле интеграла и производной:

Интегралы для чайников: как решать, правила вычисления, объяснение

Интегралы для чайников: как решать, правила вычисления, объяснение

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Изучаем понятие « интеграл »

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).

математика для чайников интегралы

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.

Исаак Ньютон и Готфрид Лейбниц

Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

найти интегралы для чайников

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов

Первообразные элементарных функций

Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:

Определенный интеграл

Точки а и b называются пределами интегрирования.

Бари Алибасов и группа

Бари Алибасов и группа

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

как решать определенный интеграл для чайников

  • Константу можно выносить из-под знака интеграла:

интегралы начало

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

как решать интегралы для чайников

Свойства определенного интеграла

  • Линейность:

интегралы для чайников подробно

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

интегралы для чайников подробно

  • При любых точках a, b и с:

высшая математика для чайников интегралы

Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Формула Ньютона-Лейбница

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Примеры

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Как выучить таблицу производных и интегралов

У меня есть некоторые проблемы с памятью, и просто заучить я не могу. Таблицу интегралов ищу с таблицы производных. Некоторые производные интуитивно понятны, Аx` = А; sinx` = cosx. Некоторые часто применял и запомнил log(x)` = 1/x (ну это тоже интуитивно, логарифм возрастает все медленнее и медленнее но возле нуля очень быстро, чему и соответствует 1/x^a ). Знаю про метод вывода производной логарифмированием, очень крутой метод.

Но есть такие функции от которых производные никак не запоминаются, например от обратных тригонометрических функций. Подскажите как вы решили эту проблему. Может там мнемоника какая-то, или есть универсальный метод вывода?

П.С. нужно мне это на экзамен, то есть вариант «не учи, всегда пользуйся таблицей» не подходит.

Интегралы – что это, как решать, примеры решений и объяснение для чайников

Интегралы – что это, как решать, примеры решений и объяснение для чайников

А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос.

Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения. Среди них:

  • вычисление площади фигуры.
  • вычисление массы тела с неравномерной плотностью.
  • определение пройденного пути при движении с непостоянной скоростью.
  • и др.

Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.

Главная причина незнания – отсутствие понимания практической значимости интегралов.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Интеграл – что это?

Предпосылки. Потребность в интегрировании возникла в Древней Греции. В то время Архимед начал применять для нахождения площади окружности методы, похожие по сути на современные интегральные исчисления. Основным подходом для определения площади неровных фигур тогда был «Метод исчерпывания», который достаточно лёгок для понимания.

Суть метода. В данную фигуру вписывается монотонная последовательность других фигур, а затем вычисляется предел последовательности их площадей. Этот предел и принимался за площадь данной фигуры.

Метод исчерпывания для определения площади круга

Метод исчерпывания для определения площади круга

В этом методе легко прослеживается идея интегрального исчисления, которая заключается в нахождении предела бесконечной суммы. В дальнейшем эта идея применялась учёными для решения прикладных задач астронавтики, экономики, механики и др.

Современный интеграл. Классическая теория интегрирования была сформулирована в общем виде Ньютоном и Лейбницем. Она опиралась на существовавшие тогда законы дифференциального исчисления. Для её понимания, необходимо иметь некоторые базовые знания, которые помогут математическим языком описать визуальные и интуитивные представления об интегралах.

Объясняем понятие «Интеграл»

Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием.

Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».

Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.

Интеграл записывается так:

Типовая подынтегральная функция

Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).

Неопределённый интеграл

Неопределенный интеграл не имеет границ интегрирования.

Для решения неопределённых интегралов достаточно найти первообразную подынтегральной функции и прибавить к ней «C».

Определённый интеграл

В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.

Точки A и B на оси X – есть ограничение зоны определения интеграла

Точки A и B на оси X – есть ограничение зоны определения интеграла

Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:

Формула Ньютона-Лейбница

Таблица интегралов для студентов (основные формулы)

Таблица интегралов

Скачайте формулы интегралов, они вам еще пригодятся

Как вычислять интеграл правильно

Существует несколько простейших операций для преобразования интегралов. Вот основные из них:

Вынесение константы из-под знака интеграла

Вынесение константы

Разложение интеграла суммы на сумму интегралов

Разложение суммы

Если поменять местами a и b, знак изменится

Изменение знака

Можно разбить интеграл на промежутки следующим образом

Разбиение на промежутки

Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.

Примеры вычисления интегралов

Решение неопределенного интеграла

Примеры вычисления неопределённых интегралов

Решение определенного интеграла

Пример вычисления определённого интеграла

Базовые понятия для понимания темы

Чтобы вы поняли суть интегрирования и не закрыли страницу от непонимания, мы объясним ряд базовых понятий. Что такое функция, производная, предел и первообразная.

Функция – правило, по которому все элементы из одного множества соотносятся со всеми элементами из другого.

Производная – функция, описывающая скорость изменения другой функции в каждой конкретной точке. Если говорить строгим языком, – это предел отношения приращения функции к приращению аргумента. Он вычисляется вручную, но проще использовать таблицу производных, в которой собрано большинство стандартных функций.

Приращение – количественное изменение функции при некотором изменении аргумента.

Предел – величина, к которой стремиться значение функции, при стремлении аргумента к определённому значению.

Пример предела: допустим при X равном 1, Y будет равно 2. Но что, если X не равен 1, а стремится к 1, то есть никогда её не достигает? В этом случае y никогда не достигнет 2, а будет только стремиться к этой величине. На математическом языке это записывается так: limY(X), при X –> 1 = 2. Читается: предел функции Y(X), при x стремящемся к 1, равен 2.

Как уже было сказано, производная – это функция, описывающая другую функцию. Изначальная функция может быть производной для какой-либо другой функции. Эта другая функция называется первообразной.

Заключение

Найти интегралы не трудно. Если вы не поняли, как это делать, прочитайте статью еще раз. Со второго раза становится понятнее. Запомните! Решение интегралов сводится к простым преобразованиям подынтегральной функции и поиска её в таблице интегралов.

Если текстовое объяснение вам не заходит, посмотрите видео о смысле интеграла и производной:

Интегралы для чайников: как решать, правила вычисления, объяснение

Интегралы для чайников: как решать, правила вычисления, объяснение

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Изучаем понятие « интеграл »

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x).

Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).

математика для чайников интегралы

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.

Исаак Ньютон и Готфрид Лейбниц

Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

найти интегралы для чайников

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов

Первообразные элементарных функций

Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.

Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:

Определенный интеграл

Точки а и b называются пределами интегрирования.

Бари Алибасов и группа

Бари Алибасов и группа

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

как решать определенный интеграл для чайников

  • Константу можно выносить из-под знака интеграла:

интегралы начало

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

как решать интегралы для чайников

Свойства определенного интеграла

  • Линейность:

интегралы для чайников подробно

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

интегралы для чайников подробно

  • При любых точках a, b и с:

высшая математика для чайников интегралы

Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Формула Ньютона-Лейбница

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.

Примеры

Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Как использовать таблицу интегралов?

Не просите маня в х найти какой-нибудь интеграл. Я не умею находить интегралы, я могу только над ними по прикалываться. Прежде, чем здесь появится таблица неопределенных интегралов, нужно представить определение неопределенного интеграла.

Прямо каламбур получился. Неопределенным интеграл называется так не потому, что определение для него никто не придумал, а потому, что с ним нельзя точно определиться. Математики меня заклюют за такое разъяснение.

Таблица интегралов

Таблица интегралов
Неопределенный интеграл и его свойства

Как видите, неопределенный интеграл представляет из себя совокупность первообразных для заданной функции. Дальше идет таблица основных неопределенных интегралов.

Таблица интегралов
Таблица основных неопределенных интегралов

Если вы любите по вечерам вместо семечек щелкать неопределенные интегралы, тогда большая таблица интегралов для вас. Если вы где-то учитесь, настоятельно рекомендую пользоваться большой таблицей интегралов в качестве ответов, которые обычно размещают в конце учебника. Помните, что вы не в детском садике и задачку без действий вам никто не задаст. Даже в задаче на одно действие между условием и ответом записывают это действие.

Вот большая таблица неопределенных интегралов. Эта таблица интегралов содержит 147 представителей этой математической фауны. Я подозреваю, что коллекция эта далеко не полная, но некоторые самые популярные виды интегралов в ней присутствуют.

Нажимаете на ссылку — откроется картинка, по виду очень похожая на размотанный рулон туалетной бумаги. Наводите курсор на эту ленту, курсор превращается в лупу со знаком «плюс», жмете. Теперь вы в царстве интегралов.

Сохранить память о столь увлекательном путешествии можно при помощи правой кнопки мыши и строчки меню «Сохранить изображение как…». Всё, Третьяковская галерея интегралов переселилась в ваш компьютер.

Это для тех, кто не любит читать всё то, что я пишу. Таблица интегралов разбита на 12 групп, все их мы рассмотрим более подробно на отдельных страницах.

Как найти неопределенный интеграл? Очень просто. Тупо берете формулу, тупо подставляете в пример. Лично я так делал. Иногда можно чего-то там перегруппировать, упростить, вынести за знак интеграла…

Название самого лучшего в мире искателя интегралов я не претендовал, о чем нисколько не жалею. Вообще, живых интегралов я за свою жизнь так и не встретил. Все они для меня вымерли, как динозавры, сразу же после окончания учебы. Да, я ещё кое-что о них помню. Только и всего.

Очень интересен каламбур, написанный буковками под таблицей основных неопределенных интегралов. На первый взгляд получается, что первообразная на первообразной сидит и первообразной погоняет. Ясно, что записанное выражение и дураку понятно.

Но бывают ещё и особо одаренные представители рода человеческого, типа меня. У меня просто мозги отключаются, когда я вижу или читаю подобные фразы. Наверное, инстинкт самосохранения срабатывает — мозг боится собственного вывиха.

Долго вспоминал, где у меня лево, где право. Через пару дней напряженной умственной работы, я пришел к выводу, что в левой части описывается ситуация, когда мы точно знаем, от какой первообразной функции мы получили производную.

В правой части мы пытаемся угадать, какой первообразной функции принадлежит производная. На динозаврах это гораздо понятнее. Если у нас есть живой динозавр, то мы точно знаем, как он выглядит, и точно можем сказать, как через десятки миллионов лет будут выглядеть его останки.

Но вот когда мы сегодня находим останки динозавров, мы не можем точно сказать, как они выглядели — окраску, голос, запах по останкам определить не возможно. Знак равенства стоит на том основании, что из всех возможных вариантов один точно правильный.

В отличии от динозавров, математические функции математики представляют в абстрактном виде, вне времени — одновременно и настоящее, и будущее, и прошлое. Теперь эта же мысль, но языком математических формул. Используем определение и свойства неопределенных интегралов. Возьмем первообразную функцию с константой и посмотрим, что происходит.

Таблица интегралов
Первообразная функция

Здесь на первое место выступает порядок выполнения математических действий. Если мы сперва дифференцируем первообразную функцию, то константа теряется. После интегрирования её нужно восстанавливать для сохранения равенства.

Если применить свойства неопределенного интеграла и взаимно сократить интегрирование и дифференцирование, то первообразная останется в своем первоначальном виде, с константой. Здесь получается фокус с тузом в рукаве.

В определении неопределенного интеграла константа является частью первообразной функции F(x) и отдельно не выделяется — туз спрятан в рукаве. После интегрирования мы добавляем константу, потерявшуюся при дифференцировании — туз достаем из рукава на всеобщее обозрение.

В этом случае главным является не сам фокус, а факт присутствия туза у фокусника как до, так и после демонстрации трюка. Что такое константа? Это число. Геометрически при помощи изменения константы можно сместить график функции F(x) вдоль оси игреков вниз или вверх.

В определении неопределенного интеграла указано, что совокупность всех этих первообразных и представляет из себя этот злополучный интеграл. Но это только одна сторона медали. В определении не указывается, что вся совокупность первообразных рассматривается в одной, кем-то когда-то выбранной, системе координат.

А если мы выберем одну первообразную, тогда изменение константы будет смещать систему координат. С точки зрения выбранной первообразной, неопределенный интеграл — это совокупность всех систем координат, в которых может рассматриваться данная первообразная функция.

Чудеса относительности. Если мы сидим попой на поверхности Земли, то мы видим, как Солнце бегает по небу. Если мы сидим попой на Солнце (не бойтесь поджариться, ведь математика — абстрактная наука и позволяет сидеть на чем угодно), то мы видим, как Земля вращается вокруг собственной оси.

Всё зависит от выбранной нами точки зрения, что в математике соответствует выбору системы координат. С учетом относительности влияния константы на сладкую парочку «функция — система координат», первое предложение в определении неопределенного интеграла можно записать так:

Неопределенный интеграл для функции f(x) — это совокупность всех первообразных данной функции или совокупность всех систем координат данной первообразной функции.

Не знаю, как посмотрят на такое развитие сюжета математики, но получилось слишком заумно. Всё это дело можно упростить, если отказаться от пыток восстановить константу в первообразной функции. Ещё раз проконтролируем свои действия.

Если у нас есть первообразная функция с константой или без, мы можем точно сказать, как выглядит её производная. Если у нас есть производная, мы не можем точно сказать, от какой именно первообразной она получена.

Всё дело заключается в том, что при взятии производной происходит изменение системы координат. Если мы рассматриваем производную f(x) в измененной системе координат, то восстановить первоначальную систему координат первообразной функции F(x) невозможно.

Нельзя воскресить мертвое. Вместо математической точности у нас получается гадание на кофейной гуще. И это гадание выражается в прибавлении константы к скелету первообразной функции. Задачу эту можно решить на уровне задних парт третьего класса.

Почему задних парт? Они находятся дальше всех от испепеляющего светоча знаний, льющегося с классной доски. Почему третьего класса? У них ещё не выработан благоговейный трепет перед учебниками. Просто начинаем фантазировать. Придумываем какое-нибудь новое определение и при помощи него разруливаем ситуацию.

Функция в собственной системе координат Fo(x) — это функция, у которой константа приравнивается к нулю. Так сказать, функция в собственном соку. Классическим примером функций в собственной системе координат можно считать тригонометрические функции. При изучении они рассматриваются без константы.

Поскольку определение неопределенного интеграла уже написано и правила хорошего тона настоятельно не рекомендуют его рихтовать, придумаем еще одно определение какой-нибудь промежуточной фигни. Пусть эта фигня будет называться «определенная первообразная«. Теперь берем определение неопределенного интеграла и на его основе пишем свое определение определенной первообразной.

Определенная первообразная для функции f(x) — это первообразная данной функции в собственной системе координат Fo(x). Если функция f(x) определена и непрерывна на промежутке (a, b) и F(x) — её первообразная, то есть F'(x)=f(x) при a меньше x меньше b

Таблица интегралов
Определенная первообразная

От определенной первообразной можно двигаться налево к неопределенному интегралу путем добавления константы или направо к определенному интегралу путем обозначения пределов интегрирования. Выглядит это приблизительно так.

Таблица интегралов
Свойства определенной первообразной

В геометрическом смысле определенная первообразная является формулой для вычисления площади фигуры, ограниченной осями координат, графиком функции f(x) и прямой х=х. В последнем равенстве с левой стороны находится просто буква икс, обозначающая переменную, с правой стороны — её численное значение.

Дальше ещё несколько слов о константе в неопределенном интеграле. При дифференцировании функции константа превращается в ноль. В математике существует первая, вторая, третья и так далее, производные. Можно предположить, что столько же существует и неопределенных интегралов. Берем результат интегрирования и снова интегрируем. Вот что может получиться…

Ветхий Завет от Матана.

Вначале ничего не было. Потом было слово. Точнее, два слова — Неопределенный Интеграл. И создал Неопределенный Интеграл константу. А потом Он создал переменную. И стала переменная плюс константа. А потом Неопределенный Интеграл создал…

Таблица интегралов
Первообразная константы

Вот так и появился этот мир, в котором мы живем. Аминь. Пардон, плюс константа. Если вас не устраивает такая история сотворения мира, эти же формулы можно трактовать как историю Большого Взрыва. Ведь ученые уверяют, что началось всё с точки, то есть с нуля.

Сергей Манулов, давний друг этого сайта, предлагал мне опубликовать в одной таблице интегралы рядом с производными. Так действительно будет нагляднее и понятней. Но здесь есть два момента. Во-первых, таблица получится такой широкой, что в этот сайт явно не влезет.

Во-вторых, насколько я помню, таблица производных несколько меньше, чем таблица интегралов. Ну не любят математики играть в производные.

Кого интересует исследование всяких каракуль, пусть даже и обличенных в математические формулы? А вот игры в интегралы среди математиков очень даже популярны. По своей популярности они могут уступать разве что играм в комплексные числа.

Наверное, так получается потому, что при помощи определенных интегралов можно находить площади криволинейных трапеций или что-то там ещё. Математики играют в свои любимые игрушки и вроде как полезным делом заняты.

Что нужно помнить о неопределенных интегралах? Как молитва заканчивается словом «Аминь», так любой неопределенный интеграл заканчивается словами «плюс константа».

Как выучить таблицу производных и интегралов

У меня есть некоторые проблемы с памятью, и просто заучить я не могу. Таблицу интегралов ищу с таблицы производных. Некоторые производные интуитивно понятны, Аx` = А; sinx` = cosx. Некоторые часто применял и запомнил log(x)` = 1/x (ну это тоже интуитивно, логарифм возрастает все медленнее и медленнее но возле нуля очень быстро, чему и соответствует 1/x^a ). Знаю про метод вывода производной логарифмированием, очень крутой метод.

Но есть такие функции от которых производные никак не запоминаются, например от обратных тригонометрических функций. Подскажите как вы решили эту проблему. Может там мнемоника какая-то, или есть универсальный метод вывода?

П.С. нужно мне это на экзамен, то есть вариант «не учи, всегда пользуйся таблицей» не подходит.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *