теория-групп — Найти число решений уравнения x^k = ι
Напоминаю, что в ответе на этот вопрос, ссылку на который я сегодня уже давал, информация о числе решений уравнения уже имеется.
По поводу порядков: элементов порядка 7 в группе нет, так как порядок элемента должен делить порядок группы. Если элемент имеет порядок 12, то он удовлетворяет уравнению x^<12>=e, но не удовлетворяет ни одному из уравнений x^6=e, x^4=e. Согласно общей формуле, первое уравнение имеет 12 решений, а два других 6 и 4 соответственно. Тому и другому уравнению удовлетворяют 2 элемента, для которых x^2=e. Итого 12-6-4+2=4 по формуле включений и исключений.
Можно воспользоваться и другим способом. Элемент x^m имеет порядок 180/НОД(180,m). Чтобы получилось 36, НОД должен быть равен 5. Этим свойством обладают числа m=5s, где s взаимно просто с 36, а таких чисел ф(36)=12.
Сколько решений имеет уравнение x18 12
Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение
Немного теории.
Показательная функция, её свойства и график
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m
4) (ab) n = a n b n
7) a n > 1, если a > 1, n > 0
8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \( a \neq 1\)
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.
3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.
Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2
Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2
Решить уравнение 3 х = 7 х
Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac = 1 \), откуда \( \left( \frac \right) ^x = 1 \), х = 0
Ответ х = 0
Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2
Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
\( \left( \frac \right) ^ = 1 \)
x — 2 = 0
Ответ х = 2
Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1
Сколько решений имеет уравнение x ^ 36 = 18 ^ это значит степень, помогите?
Алгебра | 5 — 9 классы
Сколько решений имеет уравнение x ^ 36 = 18 ^ это значит степень, помогите!
учитывая что степень 36 черная, то корень из числа четной степени имеет два решения
$x_ = \pm \sqrt[36] \approx \pm 1,084$
Графически решение смотри ниже.
Имеет ли корни уравнение хво второй степени — 10х + 25 = 0 мне надо полное решения?
Имеет ли корни уравнение хво второй степени — 10х + 25 = 0 мне надо полное решения.
(x + 5) ^ 2 + (y — 3) ^ 2 = — 1 сколько решений имеет это уравнение?
(x + 5) ^ 2 + (y — 3) ^ 2 = — 1 сколько решений имеет это уравнение?
Сколько решений имеет система уравнений?
Сколько решений имеет система уравнений?
Срочно?
Помогите с решением : сколько решений имеет уравнение x ^ 3 = x — 3?
Пожалуйста пишите решение более подробно.
Буду очень благодарен.
ПОЖАЛУЙСТА ПОМОГИТЕ ОЧЕНЬ НАДО?
ПОЖАЛУЙСТА ПОМОГИТЕ ОЧЕНЬ НАДО!
Сформулируйте правило возведения рациональной дроби в степень.
Что называется решением неравенства?
Что значит решить неравенство.
Помогите выяснить сколько имеет решений это уравнение 2n + 11m = 2011 ?
Помогите выяснить сколько имеет решений это уравнение 2n + 11m = 2011 ?
За ранее спасибо)).
(x + 5) ^ 2 + (y — 3) ^ 2 = — 1 сколько решений имеет это уравнение?
(x + 5) ^ 2 + (y — 3) ^ 2 = — 1 сколько решений имеет это уравнение.
Сколько решений имеет система уравнений?
Сколько решений имеет система уравнений.
Помогите очень срочно?
Помогите очень срочно!
Сколько имеет решений эта система?
X + 2y = 3 2x + 4y = 2.
Сколько решений имеет система уравнений?
Сколько решений имеет система уравнений.
Вы находитесь на странице вопроса Сколько решений имеет уравнение x ^ 36 = 18 ^ это значит степень, помогите? из категории Алгебра. Уровень сложности вопроса рассчитан на учащихся 5 — 9 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.
Для этого составим и решим систему уравнений. Ответ : y = — 1 \ 7x + 1 2 \ 7.
Стандартный вид : — 4x + 8 — a.
Task / 26237696 — — — — — — — — — — — — — — — — — — — — — Площадь треугольника : S = (1 / 2) * absin(∠C), но c / sin(∠C) = 2R⇒ sin(∠C) = c / 2R ( Rрадиус описанной окружности) S = (1 / 2) * ab * c / 2R = abc / 4R .
√(3 / (19 — 7x)) = 0, 2 (√(3 / (19 — 7x)))² = (1 / 5)² 3 / (19 — 7x) = 1 / 25 3 = (1 / 25) * (19 — 7x) 19 — 7x = 3 * 25 19 — 7x = 75 7x = — 56 x = — 8 Ответ : x = — 8.
Пусть х — число Если приписать справа 9 получится 10х + 9 тогда, 10х + 9 — х = 702 9х = 702 — 9 9х = 693 х = 77 Ответ : 77.
X ^ 4 = (3x — 4) ^ 2 (x ^ 2) ^ 2 — (3x — 4) ^ 2 = 0 (x ^ 2 — 3x + 4)(x ^ 2 + 3x — 4) = 0 x ^ 2 — 3x + 4 = 0 D = b ^ 2 — 4ac = 9 — 4×1×4 = — 7 т. К. дискриминант отрицательный, то корней нет x ^ 2 + 3x — 4 = 0 D = 9 — 4×1×( — 4) = 25 = 5 ^ 2 x1 = ( -..
Как найти дискриминант квадратного уравнения
О чем эта статья:
Понятие квадратного уравнения
Уравнение — это равенство, содержащее переменную, значение которой нужно найти.
Например, х + 8 = 12 — это уравнение, содержащее переменную х.
Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.
Например, если х = 5, то при подстановке в уравнение мы получим:
13 = 12 — противоречие.
Значит, х = 5 не является корнем уравнения.
Если же х = 4, то при подстановке в уравнение мы получим:
12 = 12 — верное равенство.
Значит, х = 4 является корнем уравнения.
Решить уравнение — значит найти все его корни или доказать, что их не существует.
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.
Такое уравнение можно решить с помощью формулы дискриминанта.
Понятие дискриминанта
Дискриминант квадратного уравнения — это выражение, равное b 2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.
Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.
Как решать квадратные уравнения через дискриминант
Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:
Определим, чему равны коэффициенты a, b, c.
Вычислим значение дискриминанта по формуле D = b2 − 4ac.
Если дискриминант D 0, то у уравнения две корня, равные
Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:
Примеры решения квадратных уравнений с помощью дискриминанта
Пример 1. Решить уравнение: 3x 2 — 4x + 2 = 0.
- Определим коэффициенты: a = 3, b = -4, c = 2.
- Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.
Ответ: D 2 — 6x + 9 = 0.
- Определим коэффициенты: a = 1, b = -6, c = 9.
- Найдем дискриминант: D = b 2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.
D = 0, значит уравнение имеет один корень:
Ответ: корень уравнения 3.
Пример 3. Решить уравнение: x 2 — 4x — 5 = 0.
- Определим коэффициенты: a = 1, b = -4, c = -5.
- Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.
D > 0, значит уравнение имеет два корня:
Ответ: два корня x1 = 5, x2 = -1.
Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.
дискретная-математика — Количество решений уравнения
Добрый день. На экзамене по дискретке попался вопрос:
Сколько целых неотрицательных решений имеет уравнение
x1+x2+. +xk = n (справа от х — порядковый номер, а не коэффициент)
Так и не решил. Подскажте пожалуйста, как это сделать
задан 23 Июн ’13 13:36
2 ответа
Это сочетания с повторениями. Они сводятся к обычным сочетаниям. Возьмём какое-нибудь решение уравнения, и заменим в нём каждое число $%x_i$% на столько же «палочек», и все «плюсы» оставим. Получится своего рода «штрих-код» решения. Например, если мы видим запись $%|||++|+||$%, то это значит, что у нас был вектор $%(3,0,1,2)$% из чисел $%x_i$%, где $%i=1,2,3,4$%. Здесь $%k=4$%, $%n=3+0+1+2=6$%.
Понятно, что каждому решению соответствует свой «штрих-код», и по нему решение восстанавливается однозначно ($%x_i$% равно количеству палочек, перед которыми стоит ровно $%i-1$% «плюс»). Таким образом, количество решений равно количеству «штрих-кодов», где «палочек» ровно $%n=x_1+\cdots+x_k$%, а «плюсов» ровно $%k-1$%. Всего в коде имеется $%n+k-1$% символ, и чтобы составить такой код, мы из $%n+k-1$% мест выбираем те $%n$% мест, на которых будут стоять «палочки». Это не что иное как $%C_ ^n$%: число сочетаний из $%n+k-1$% по $%n$%. Его же можно записать и по-другому — как $%C_ ^ $%.
отвечен 23 Июн ’13 14:14
@falcao, из последних двух предложений Вашего решения следует равенство k-1=n. Но даже для Вашего примера это не так. Или я чего-то не понимаю?
Нет, ничего такого из последнего предложения не следует. Это свойство симметричности сочетаний. Здесь равенство получается не по причине того, что числа вверху равны, а по причине, что в сумме они дают число, написанное внизу. Иными словами, $%C_m^i=C_m^ $%. Это следует как из определения сочетаний (когда мы берём $%i$% элементов из $%m$%, то оставляем не взятыми $%m-i$%, что делается тем же числом способов), так и из формулы с факториалами. В задаче выше получается ответ $$\frac .$$
Введение в задачи с параметром: решение уравнений с параметром
Мы привыкли, что в уравнении коэффициенты не меняются. Но возможно ли из одного уравнения составить бесконечное множество различных его вариантов? Узнаем об этом в статье.
Что такое параметр
Утром на термометре было некоторое количество градусов, которое мы обозначим за х. В обед температура воздуха изменилась в несколько раз. Во сколько раз должна была измениться температура воздуха, чтобы на термометре было 20 градусов?
Такие задачи достаточно легко решаются. Если бы изначально было пять градусов, то искомое число было бы равно \(\frac = 4\). А если было 10 градусов, то искомое число было бы равно \(\frac = 2\).
Но не все так просто. Мы не знаем, какой изначально была температура. Также мы не знаем, во сколько раз она изменилась. То есть мы получили уравнение с двумя неизвестными переменными.
Обозначим вторую переменную a, у нас получится уравнение вида ax=20. Только что введенная нами переменная “a” называется параметр.
Параметр — это условная буква, вместо которой можно подставить число.
То есть параметр — это еще одна переменная, которая может принять несколько значений.
Как решать уравнения с параметром, если у нас целых две (а то и больше) неизвестных переменных? Нужен иной подход, чем при решении обычного уравнения.
Решить уравнение с параметром — это найти такие числовые значения параметра, при которых условие выполняется.
Мы ищем не единственное значение параметра, а все возможные его значения для заданного условия.
Линейные уравнения с параметром
Вернемся к нашей погоде. У нас получилось уравнение ax = 20. Как найти, сколько градусов было изначально? Разделить все уравнение на число a.
Какие значения может принимать параметр? Любые. Например, при a = 1 x = 20.
При a = 2 x = 10.
При a = 40 x = 0,5
Что, если a=0? Мы получаем уравнение \(x = \frac \), у которого нет решения, поскольку на 0 делить нельзя.
Если мы не будем преобразовывать изначальное уравнение, то получится 0*x=20, то есть уравнение не будет выполняться: какое бы число мы ни умножили на 0, получится 0.
Получается, решение есть при любых значениях a, кроме 0. Таким образом, мы и нашли ответ: при a = 0 решений нет, при a \(\neq\) 0 — x = 20a.
Добавим немного теории. Представим наше уравнение в виде ax = b, где a, b — действительные числа. Рассмотрим несколько случаев.
Предположим, Пете необходимо в несколько раз увеличить скорость х, пробежать дистанцию и поставить рекорд. Чтобы поставить рекорд, он должен бежать со скоростью 15 км/ч — это и будет коэффициент b.
Получаем уравнение ax = 15. Как найти начальную скорость Пети? \(x = \frac \).
Такое уравнение мы уже решали выше. Получаем два случая:
- Если a = 0 — решений нет.
- Если a \(\neq\) 0, то изначальная скорость Пети была равна \(x = \frac \).
Мы получаем уравнение ax = 0. Также разберем два случая значений параметра:
- a = 0. Мы получаем уравнение 0 * x = 0. Какое значение х нужно подставить, чтобы уравнение выполнялось?
Какое бы число мы ни умножили на 0, получим 0. Получаем бесконечное множество решений.
- a \(\neq\) 0. Здесь получается, что равен 0 уже х: \(x = \frac = 0\).
Подведем итог. Как можно решить уравнение вида ax = b?
- Если a = 0, b = 0 — бесконечное множество решений.
- Если a = 0, b \(\neq\) 0 — решений нет.
- Если a \(\neq\) 0, b \(\neq\) 0 — решением будет \(x = \frac\).
Квадратные уравнения с параметром
Прежде чем приступать к изучению следующего материала, рекомендуем ознакомиться с понятием квадратного уравнения в статье «Линейные, квадратные и кубические уравнения». Также важно ориентироваться в графиках параболы из статьи «Основные элементарные функции».
Квадратное уравнение имеет вид ax 2 + bx + c = 0, а графиком функции y = ax 2 + bx + c будет парабола.
Как работать с такими уравнениями, если в них присутствует параметр? В первую очередь, важны рассуждения. Любое задание с параметром можно решить, проанализировав функцию.
Решение квадратного уравнения опирается на понятие дискриминанта. В зависимости от его значений может получиться разное количество корней:
- При D > 0 уравнение имеет два корня.
- При D = 0 уравнение имеет один корень.
- При D < 0 уравнение не имеет корней.
Как это проверить на графике? Корни уравнения — это точки, в которых парабола пересекает ось абсцисс, то есть ось х.
Рассмотрим три уравнения.
1) x 2 — x — 2 = 0
Решим уравнение с помощью дискриминанта.
D = 1 2 — 4 * 1 * (-2) = 1 + 8 = 9
Поскольку дискриминант больше 0, то уравнение имеет два корня.
Проверим с помощью графика функции. Построим параболу и заметим, что она действительно дважды пересекает ось абсцисс, а координаты этих точек равны (−1; 0) и (2; 0) .
2) x 2 -4x + 4 = 0
Решим уравнение с помощью дискриминанта.
D = 16 — 4 * 1 * 4 = 16 — 16 = 0
Поскольку дискриминант равен 0, у уравнения всего один корень.
Проверим на графике. И действительно, парабола касается оси х только один раз в вершине, координаты которой (2; 0).
3) x 2 — 5x + 7 = 0
Решим уравнение с помощью дискриминанта.
D = 25 — 4 * 1 * 7 = 25 — 28 = -3
Поскольку дискриминант отрицательный, у уравнения нет корней. И это отлично видно, если посмотреть на график функции: парабола лежит выше оси х и никогда ее не пересечет.
Где можно применить эти знания, решая параметры?
Пример 1. Найдите все значения параметра a, при которых уравнение x 2 + (3a + 11)x + 18,25 + a = 0 имеет два различных решения.
Решение. Перед нами квадратное уравнение с коэффициентами b = 3a + 11, c = a + 18,25. В каких случаях это уравнение будет иметь два различных корня?
Квадратное уравнение имеет два корня, если D > 0. Нужно найти все значения параметра, при которых дискриминант будет положительным.
1. Для начала найдем сам дискриминант.
D = (3a + 11) 2 — 4 * 1 * (a + 18,25) = 9a 2 + 66a + 121 — 4a — 73 = 9a 2 + 62a + 48
2. Поскольку дискриминант должен быть больше 0, то получаем неравенство 9a 2 + 62a + 48 > 0
4. Дискриминант будет положительным при \(a \in (-\infty; -6) \cup (-\frac ; +\infty)\). Это и будет ответ.
Ответ: \(a \in (-\infty; -6) \cup (-\frac ; +\infty)\).
Важно: в уравнении мы указываем не сами решения уравнения, а значения параметра, при которых уравнение имеет два решения.
Пример 2. При каких значениях параметра a уравнение (2a + 1)x 2 — ax + 3a + 1 = 0 имеет два различных решения?
Решение. Этот пример похож на предыдущий, однако здесь есть одна важная особенность. Что произойдет с уравнением, если 2a+1 = 0?
Мы получим уравнение 0,5x — 0,5 = 0, то есть линейное уравнение. У уравнения будет всего одно решение, что уже не подходит под условие задачи.
1. Поскольку по условию должно быть 2 решения, мы получаем, что a \(\neq\) -0,5.
2. Найдем дискриминант уравнения. Он должен быть строго больше 0, чтобы у уравнения было два решения.
D = a 2 — 4 * (2a + 1) * (3a + 1) = a 2 — 24a 2 — 20a -4 = -23a 2 — 20a — 4
3. Составим неравенство и решим его:
4. Разложим уравнение на множители:
5. Получаем неравенство:
6.Тогда \(a \in (\frac — 10> ; \frac — 10> )\). Вспомним, что a \(\neq\) -0,5, следовательно, мы получаем ответ \(a \in (\frac — 10> ; -0,5) \cup (-0,5; \frac — 10> )\).
Теорема Виета
Дискриминант — не единственный способ решить квадратное уравнение. Обратимся к теореме Виета. Если нам дано уравнение ax 2 + bx + c = 0, то его корни можно найти с помощью следующей системы:
Теорему Виета удобно использовать, если на корни уравнения наложены дополнительные ограничения.
Пример 3. При каких значениях параметра a корни уравнения x 2 — 3ax — a(a — 1) = 0 удовлетворяют условию x1 = 5x2.
Решение. 1. Корни уравнения — это два различных числа. Значит, дискриминант должен быть строго больше 0:
D = 9a 2 — 4 * 1 * (-a 2 + a) = 9a 2 + 4a 2 — 4a = 13a 2 — 4a = a(13a — 4)
Получаем неравенство a(13a — 4) > 0, следовательно, \(a \in (-\infty; 0) \cup (\frac ; +\infty)\).
2. По теореме Виета найдем корни уравнения:
5. Мы нашли значения параметра, при которых выполняется условие. Осталось проверить, чтобы при этих значениях у уравнения было два корня.
a = 0 не подходит, поскольку ограничение \(a \in (-\infty; 0) \cup (\frac ; +\infty)\) не включает точку 0.
\(a = \frac \) подходит, поскольку \(\frac > \frac \).
Ответ: \(a = \frac \)
Условия на корни квадратного трехчлена
Однако могут встретиться еще более сложные задания с параметрами. Рассмотрим каждый из этих случаев.
1. Корни квадратного трехчлена меньше, чем число N.
Построим параболу. Вспомним, что ветви параболы могут быть направлены или вверх, или вниз.
Если ветви параболы направлены вверх. Отметим на оси х точку N так, чтобы она лежала правее обоих корней уравнения. Так мы зададим условие, что корни уравнения меньше, чем число N.
Представим, что мы идем по холмистой местности, и у нас есть ее карта. Имея перед собой плоскую картинку, мы понимаем, как относительно друг друга располагаются точки в пространстве. Но посмотрев на рельеф сбоку, заметим, что точки имеют разную высоту.
Пусть в точках, где парабола пересекает ось х, будут привалы на экскурсионном маршруте, а в точке N будет смотровая площадка.
Что можно сказать про смотровую площадку на этой карте? Она находится выше, чем привалы, и лежит правее, чем самая низкая точка рельефа.
Рассмотрим эти условия на графике. В точке N значение функции f(x) больше, чем в корнях уравнения. Более того, она лежит правее, чем вершина параболы, то есть ее абсцисса больше абсциссы параболы.
Почему эти условия так важны? Пусть точка N будет лежать левее вершины параболы. Тогда не выполняется условие, что корни меньше, чем N.
В этом случае на нашем экскурсионном маршруте смотровая площадка будет лежать до привалов.
А если значение функции в точке N будет меньше, чем в корнях уравнения? Точка N будет лежать между ними.
В этом случае смотровая площадка окажется между привалами.
Аналогичным способом можно проследить изменение условий при любом положении точки N на графике.
Для того чтобы оба корня квадратного трехчлена ax 2 + bx + c были меньше, чем число N, необходимо и достаточно выполнение следующих условий:
Что произойдет, если ветви параболы будут направлены вниз? Наш экскурсионный маршрут немного поменяется: появится гора, а не овраг.
Где теперь располагается смотровая площадка? Она будет ниже, чем привалы, и дальше, чем самая высокая точка горы.
Мы можем сделать вывод, что точка N на графике будет лежать правее вершины параболы, а значение функции в ней будет меньше, чем значение функции в корнях уравнения.
Для того чтобы оба корня квадратного трехчлена ax 2 + bx + c были меньше, чем число N, необходимо и достаточно выполнение следующих условий:
2. Корни квадратного трехчлена больше, чем число N.
Рассуждаем так же, как и в предыдущей функции, однако теперь точка N перемещается левее параболы.
Если ветви параболы направлены вверх, то функция в точке N принимает большее значение, чем в корнях уравнения, а сама точка N будет лежать левее параболы.
Для того чтобы оба корня квадратного трехчлена ax 2 + bx + c были больше, чем число N, необходимо и достаточно выполнение следующих условий:
Теперь направим ветви параболы вниз. Значение функции в точке N будет меньше, чем в корнях уравнения.
Для того чтобы оба корня квадратного трехчлена ax 2 + bx + c были больше, чем число N, необходимо и достаточно выполнение следующих условий:
С помощью анализа расположения точек на графике функций можно задать условия для любой ситуации, даже если точек будет несколько.
Достаточно начертить примерный график функции и расставить на оси х нужные точки. Чтобы составить систему, необходимо:
В итоге должна получиться система, с помощью которой можно решить задачу.
Фактчек
- Параметр — это буква a, вместо которой можно подставить число. Решить уравнение с параметром — это найти такие числовые значения параметра, при которых условие выполняется.
- При решении линейного уравнения ax=b в зависимости от значения коэффициентов может получиться несколько вариантов решений. Если a = 0, b = 0 — бесконечное множество решений. Если a = 0, b \(\neq\) 0 — решений нет. Если a \(\neq\) 0, b \(\neq\) 0 — решением будет \(x = \frac\).
- При решении квадратного уравнения обязательно проверять коэффициент перед x 2 . Если коэффициент будет равен 0, то уравнение станет линейным.
- При решении квадратного уравнения важно учитывать значение дискриминанта: если он строго больше 0, то корней у уравнения два, если дискриминант равен 0, то у уравнения один корень, если дискриминант меньше 0, то у уравнения нет корней.
- Решить квадратное уравнение можно и с помощью теоремы Виета.
- Если в задаче даны дополнительные условия на корни уравнения (например, они должны быть больше или меньше определенного числа), то задать их можно с помощью системы. Неравенства в системе можно составить с помощью анализа примерного графика функций.
Проверь себя
Задание 1.
Что такое параметр?
- Это буква a, вместо которой можно подставить число.
- Это коэффициент перед x 2 в квадратном уравнении.
- Это переменная х.
- Это значение функции в определенной точке.
Задание 2.
Дано уравнение ax = b. Сколько решений оно имеет, если a = 0 и b = 0?
- Решений нет.
- Одно решение.
- Бесконечное множество решений.
- Невозможно определить количество решений.
Задание 3.
При каких значениях дискриминанта уравнение будет иметь корни?
- D > 0
- D = 0
- D < 0
- D \(\neq\) 0
Задание 4.
Корни квадратного уравнения меньше числа А. Где будет лежать вершина параболы относительно точки А?
- Справа.
- Слева.
- Совпадать с точкой А.
- Невозможно определить расположение вершины.
Задание 5.
Меньший корень квадратного уравнения больше числа А, но меньше числа В. Ветви параболы направлены вниз. Чему будет равно значение функции в точке В?
- Значение функции в точке В будет меньше 0.
- Значение функции в точке В будет равно 0.
- Значение функции в точке В будет больше 0.
- Невозможно определить значение функции.
Ответы: 1. — 1 2. — 3 3. — 4 4. — 2 5. — 3.
Решение любых систем уравнений
Учитель очень удивится увидев твоё верное решение системы уравнений
Решим систему уравнений!
Что умеет калькулятор?
- Решает системы уравнений различными методами:
- Метод Крамера
- Метод Гаусса
- Численный метод
- Графический метод
- Методами Крамера и Гаусса
- Прямой способ подстановки переменных
Примеры
Система линейных уравнений с двумя неизвестными
Система линейных ур-ний с тремя переменными
Система дробно-рациональных уравнений
Система нелинейных уравнений
Система четырёх уравнений
Система линейных уравнений с четырьмя неизвестными
Система показательных и логарифмических уравнений
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
Система двух ур-ний, содержащая куб (3-ю степень)
Система ур-ний c квадратным корнем
Система тригонометрических ур-ний
Правила ввода выражений и функций
3.14159.. e Число e — основание натурального логарифма, примерно равно
2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности
Сколько действительных решений имеет уравнение (1 + x ^ 2016)(1 + x) ^ 2014 = (2x) ^ 2015?
Сколько действительных решений имеет уравнение (1 + x ^ 2016)(1 + x) ^ 2014 = (2x) ^ 2015?
Колличество решений уравнения равно максимальному показателю степени при Х :
в данном уравнении нужно раскрыть скобки, опираясь только на степень с Х, то есть : (1 + x ^ 2016)(1 + x) ^ 2014 = (2x) ^ 2015
X ^ 2014) = (2x) ^ 2015
x ^ 2016 * x ^ 2014.
неважно как раскроются все скобки, нужно лишь знать максимальный показатель степени при Х, который равен 4030, значит значит уравнение имеет 4030 решений
отв : 4030 решений.
Сколько действительных решений имеет уравнение (1 + x ^ 2016)(1 + x) ^ 2014 = (2x) ^ 2015?
Сколько действительных решений имеет уравнение (1 + x ^ 2016)(1 + x) ^ 2014 = (2x) ^ 2015?
Сколько решений имеет система уравнений?
Сколько решений имеет система уравнений!
Решите уравнение : х(х + 1)(х + 2)(х + 3) = 5040?
Решите уравнение : х(х + 1)(х + 2)(х + 3) = 5040.
Сколько действительных корней имеет уравнение?
При каких действительных значениях t уравнение 9x ^ <2>+ 2tx + 1 = 0 не имеет решений?
При каких действительных значениях t уравнение 9x ^ <2>+ 2tx + 1 = 0 не имеет решений?
Сколько действительных корней имеет уравнение 9х(квадрат) — 12х + 4?
Сколько действительных корней имеет уравнение 9х(квадрат) — 12х + 4.
ПЛИИИЗ?
Сколько решений имеет система уравнений.
Сколько решений имеет система уравнений?
Сколько решений имеет система уравнений?
Сколько действительных кореней имеет уравнение 1 + x — x ^ 2 = |x ^ 3|?
Сколько действительных кореней имеет уравнение 1 + x — x ^ 2 = |x ^ 3|.
Сколько действительных корней имеет уравнение (х ^ 3 — 144) ^ 18 = — 156?
Сколько действительных корней имеет уравнение (х ^ 3 — 144) ^ 18 = — 156?
Сколько решений имеет система уравнений?
Сколько решений имеет система уравнений.
На этой странице сайта размещен вопрос Сколько действительных решений имеет уравнение (1 + x ^ 2016)(1 + x) ^ 2014 = (2x) ^ 2015? из категории Алгебра с правильным ответом на него. Уровень сложности вопроса соответствует знаниям учеников 5 — 9 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы. Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку.
— 9 (8 — 9x) = 4x + 5 — 72 + 81x = 4x + 5 81x — 4x = 5 + 72 77x = 77 x = 1.
( — 10)²( — 0, 7 — 5 * ( — 10)) — 32 = 100 * ( — 0. 7 + 50) — 32 = 100 * 49. 3 — 32 = 4930 — 32 = 4898.
Photomath скачай , он решит.
АВ ( 3 ; 1 ) BC ( (1 — 3) ; (7 — 1)) BС( — 2 ; 6) Скалярное произведение векторов AB * BC = 3 * ( — 2) + 1 * 6 = 0 Вектора перпендикулярны. Угол B прямой.
— 48. Если хочешь скачай калькулятор дробей.
Минус 47. Одна треть. Вот так вот.
— (4 а в 5 степени * в в 3 степени ) 2 степень / 8a в 7 степени в в 4 степени . — 16 а в 10 степени в 6 степени / 8а в 7 степени в в 4 степени . — 2а в 3 степени в 2 степени .
Сколько решений в натуральных числах имеет уравнение a b c d 18
Сколько решений в натуральных числах имеет уравнение a b c d 18
а) Сколько решений в неотрицательных целых числах имеет уравнение a + b = 99?
б) Сколько решений в неотрицательных целых числах имеет система уравнений
в) Сколько решений в неотрицательных целых числах имеет уравнение a + b + c =99?
а) Для любого существует ровно одно значение b, удовлетворяющее уравнению. Всего таких a сто штук.
б) Первое уравнение системы имеет ровно 100 решений. Второе уравнение, аналогично, имеет ровно 100 решений. Для каждой пары (a;b), удовлетворяющей первому уравнению, существует ровно 100 пар (c;d), удовлетворяющих второму уравнению. Поэтому общее количество решений системы равно
в) Пусть a=0. Получим уравнение b+с=99. Тогда существует ровно 100 пар (b;c), удовлетворяющих уравнению. Пусть теперь а=1. Получим уравнение b+с=98. Аналогично, существует ровно 99 пар (b;c), удовлетворяющих уравнению. И так далее, для а=99 существует ровно 1 пара (b;c), удовлетворяющая уравнению. Таким образом, всего получается решений.
Ответ: а) 100; б) 10000; в) 5050.
— обоснованное решение п. б;
— обоснование в п. в того, что S может принимать все целые значения (отличные от −1 и 1);
Метод подсчёта количества решений
Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.
В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.
Общая форма интересующего нас уравнения:
где n и m — положительные целые числа.
Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.
Нам нужен метод
Давайте начнём с частного случая общего уравнения:
Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):
Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:
и мы сможем подсчитать число решений — m+1.
Это было просто, верно?
Теперь возьмём немного более сложный вариант с тремя переменными, скажем:
С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):
Число решений в этом случае равно 10.
Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.
Значит, нужен эффективный метод.
Разрабатываем метод
Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:
Одним из решений было (5, 0). Давайте преобразуем его в:
Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:
Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:
Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.
В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:
Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.
Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:
где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.
Эта формула обычно записывается в компактной форме как:
Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:
Это то же самое число, что мы получили методом прямого счёта!
Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:
Некоторые решения можно записать в разложенном виде:
В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:
И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:
а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:
как и утверждалось выше.
Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:
Простейшее решение этого уравнения:
Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:
В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).
Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:
Как рассчитать кол-во вариантов?
Сколько решений имеет уравнение x + y + z = 8:
a) в целых неотрицательных числах;
b) в целых положительных числах?Сколько можно составить из цифр 1, 2, 3, 4:
a) двузначных чисел;
b) двузначных чисел с различными цифрами;- Вопрос задан более трёх лет назад
- 5003 просмотра
Вы поставили совершенно верный тег — Комбинаторика. Этот раздел математики и начинался как метод подсчета количества различных вариантов/комбинаций.
Наиболее часто задачи на комбинаторику подразумевают последовательное фиксирование количества состояний переменных одной за одной.
Давайте начнем со второй задачи — она несколько проще.
2а) Первую цифру двузначного числа с заданными условиями можно выбрать 4 способами; после того как первая цифра определена, вторую можно выбрать снова 4 способами. Итого вариантов 4х4=16.
2б) Первую цифру двузначного числа с заданными условиями можно выбрать 4 способами; после того как первая цифра определена, вторую можно выбрать уже только тремя способами, т.к. цифра не может совпасть с той которая на первой позиции. Итого вариантов 4х3=12.1а) Целых неотрицательных, которые могут сыграть роль «x», — 9 (от 0 до 8 включительно). После того как «x» зафиксирован, «y» может быть выбран (8-x+1) способами, например, если х=7, то остается для «y» только 0 и 1. После того как «х» и «y» зафиксированы, «z» всегда можно выбрать только 1 способом, следовательно, количество вариантов решений он не увеличивает. Осталось посчитать сумму кол-ва возможных комбинаций (считаем по «y»-кам) = (9+8+7+. +1) — по формуле суммы арифметической прогрессии — 10*9/2 = 45. И соответственно, Ваш ответ неверен.
1б) Аналогично, но уменьшая кол-во «x»-ов до 6 (от 1 до 6 включительно), а кол-во «y» до (7-х) способов. Сумма (6+5+. +1) = 7*6/2 = 21.