Кратного 10 это как
Перейти к содержимому

Кратного 10 это как

  • автор:

Двузначные числа которые делятся на 10

Какие числа кратны 10

Термин «кратность» относится к области математики: с точки зрения этой науки, он означает количество раз, которое определенное число входит в состав другого числа.

Понятие кратности

Такое понимание термина «кратность» влечет за собой выведение из него нескольких важных следствий. Первое из них — то, что любое число может иметь неограниченное количество кратных ему чисел. Это связано с тем, что фактически для того, чтобы получить кратное некоторому числу другое число, необходимо первое из них умножить на любое целое положительное значение, которых, в свою очередь, имеется бесконечное множество. Например, кратными числу 3 являются числа 6, 9, 12, 15 и другие, получаемые умножением числа 3 на любое целое положительное число.

Второе важное свойство касается определения наименьшего целого числа, являющегося кратным рассматриваемому. Так, наименьшим кратным по отношению к любому числу является само это число. Это связано с тем, что наименьшим целым результатом деления одного числа на другое является единица, а именно деление числа само на себя и обеспечивает этот результат. Соответственно, число, кратное рассматриваемому, не может быть меньше, чем само это число. Например, для числа 3 наименьшим кратным числом будет 3. При этом определить наибольшее число, кратное рассматриваемому, фактически невозможно.

Числа, кратные 10

Числа, кратные 10, обладают всеми перечисленными свойствами наравне с другими кратными числами. Так, из перечисленных свойств следует, что наименьшим числом, кратным 10, является само число 10. При этом, поскольку число 10 является двузначным, можно сделать вывод, что кратным числу 10 могут быть только числа, состоящие не менее чем из двух знаков.

Для того чтобы получить другие числа, кратные 10, необходимо число 10 умножить на любое целое положительное число. Таким образом, в перечень чисел, кратных 10, войдут числа 20, 30, 40, 50 и так далее. Следует обратить внимание, что все полученные числа должны без остатка делиться на 10. При этом определить наибольшее число, кратное 10, как и в случаях с другими числами, невозможно.

Кроме того, обратите внимание, что существует простой практический способ определить, является ли конкретное рассматриваемое число кратным 10. Для этого следует выяснить, какова его последняя цифра. Так, если она равна 0, рассматриваемое число будет кратным 10, то есть может быть без остатка разделено на 10. В противном случае число не является кратным 10.

Признаки делимости на 10, 100, 1 000 и так далее: примеры, доказательства

Продолжаем разговор о признаках делимости. В этом материале мы изучим, по каким признакам можно определить делимость числа на 1000 , 100 и т.д. В первом пункте сформулируем их, возьмем несколько примеров, после чего приведем необходимые доказательства. Ближе к концу мы разберем доказательства делимости на 1000 , 100 , 10 с помощью математической индукции и формулы бинома Ньютона.

Формулировка признака делимости на 10 , 100 и т.д. с примерами

Сначала запишем формулировку признака делимости на десять:

Если число заканчивается на 0 , то его можно разделить на 10 без остатка, а если на любую другую цифру, то нельзя.

Теперь запишем признак делимости на 100 :

На 100 без остатка можно разделить такое число, которое заканчивается двумя нулями. Если хотя бы одна из двух цифр в конце не равна нулю, то такое число разделить на 100 без остатка нельзя.

Точно так же можно вывести признаки делимости на тысячу, 10 тысяч и так далее: в зависимости от количества нулей в делителе нам требуется соответствующее количество нулей в конце числа.

Отметим, что данные признаки нельзя распространить на 0 , поскольку 0 можно разделить на любое целое число – и на сто, и на тысячу, и на десять тысяч.

Эти признаки легко применять в решении задач, ведь подсчитать количество нулей в исходном числе несложно. Возьмем несколько примеров применения данных правил на практике.

Условие: определите, какие числа из ряда 500 , − 1 010 , − 50 012 , 440 000 300 000 , 67 893 можно разделить на 10 , 10 000 без остатка, а какие из них не делятся на 100 .

Решение

Согласно признаку делимости на 10 , мы можем совершить такое действие с тремя числами из указанных, а именно с − 1 010 , 440 000 300 000 , 500 , ведь они все заканчиваются нулями. А вот для − 50 012 и 67 893 такого деления без остатка мы осуществить не можем, поскольку у них в конце стоят 2 и 3 .

На 10 тысяч здесь можно разделить всего одно число – 440 000 300 000 , поскольку лишь в нем достаточно нулей в конце ( 4 ) . Зная признак делимости на 100 , можно сказать, что − 1 010 , − 50 012 и 67 893 на сотню не делятся, поскольку в конце у них нет двух нулей.

Ответ: на 10 можно разделить числа 500 , − 1 010 , 440 000 300 000 ; на 10 000 – число 440 000 300 000 ; на 100 не делятся числа 1 010 , − 50 012 и 67 893 .

Как доказать признаки делимости на 10 , 100 , 1000 и др.

Для доказательства нам потребуется вспомнить, как правильно умножать натуральные числа на 100 , 10 и т.д., а также вспомнить, что из себя вообще представляет понятие делимости и какими свойствами оно обладает.

Сначала приведем доказательство признака делимости числа на 10 . Для удобства запишем его в виде теоремы, то есть представим как необходимое и достаточное условие.

Чтобы определить, делится ли целое число на 10 , нужно посмотреть на его конечную цифру. Если она равна 0 , то такое деление без остатка возможно, если она представляет из себя другую цифру, то нет.

Начнем с доказательства необходимости данного условия. Допустим, нам известно, что некое число a можно разделить на 10 . Докажем, что в конце у него стоит 0 .

Поскольку a можно разделить на 10 , то согласно самому понятию делимости, должно существовать такое целое число q , при котором будет верным равенство a = 10 · q . Вспомним правило умножения на 10 : произведение 10 · q должно быть целым числом, запись которого можно получить, если дописать к q справа нуль. Значит, в записи числа a = 10 · q последним будет стоять 0 . Необходимость можно считать доказанной, далее нам нужно доказать достаточность.

Допустим, что у нас есть целое число с 0 на конце. Докажем, что оно делится на 10 . Если последняя цифра целого числа равна нулю, то исходя из правила умножения на 10 , его можно представить в виде a = a 1 · 10 . Здесь число a 1 получается из a , в котором убрали последнюю цифру. По определению делимости из равенства a = a 1 · 10 будет следовать делимость a на 10 . Таким образом мы доказали достаточность условия.

Точно так же доказываются и другие признаки делимости – на 100 , 1000 и т.д.

Прочие случаи делимости на 1000 , 100 , 10 и др.

В данном пункте мы расскажем о других способах определения делимости на 10 . Так, если изначально у нас задано не число, а буквенное выражение, то воспользоваться указанными выше признаками мы не можем. Здесь нужно применить другие методы решения.

Первым таким методом является использование формулы бинома Ньютона. Решим такую задачу.

Условие: определите, можно ли разделить 11 n + 20 n — 21 на 10 при любом натуральном значении n .

Решение

Cначала представим 11 как сумму 10 и единицы, а потом воспользуемся нужной формулой.

11 n + 20 n — 21 = ( 10 + 1 ) n + 20 n — 21 = = C n 0 · 10 n + C n 1 · 10 n — 1 · 1 + . . . + C n n — 2 · 10 2 · 10 n — 2 + C n n — 1 · 10 · 1 n — 1 + C n n · 1 n + + 20 n — 21 = = 10 n + C n 1 · 10 n — 1 · 1 + . . . + C n n — 2 · 10 2 · n · 10 + 1 + + 20 n — 21 = = 10 n + C n 1 · 10 n — 1 · 1 + . . . + C n n — 2 · 10 2 + 30 n — 20 = = 10 · 10 n — 1 + C n 1 · 10 n — 2 + . . . + C n n — 2 · 10 1 + 3 n — 2

Мы получили выражение, которое можно разделить на 10 ,поскольку там есть соответствующий множитель. Значение выражения в скобках будет представлять из себя натуральное число при любом натуральном значении n . Значит, исходное выражение 11 n + 20 n — 21 можно разделить на десять при любом натуральном n .

Ответ: данное выражение делится на 10 .

Еще один метод, который возможно применить в данном случае, – математическая индукция. Покажем на примере задачи, как это делается.

Условие: выясните, будет ли 11 n + 20 n — 21 делится на 10 при любом натуральном n .

Решение

Применим метод математической индукции. Если n будет равен единице, то у нас получится 11 n + 20 n — 21 = 11 1 + 20 · 1 — 21 = 10 . Деление десяти на десять возможно.

Допустим, что выражение 11 n + 20 n — 21 будет делиться на 10 при n = k , то есть 11 k + 20 k — 21 можно разделить на 10 .

Учитывая предположение, сделанное ранее, попробуем доказать, что выражение 11 n + 20 n — 21 делится на 10 при n = k + 1 . Для этого нам нужно преобразовать его следующим образом:

11 k + 1 + 20 · k + 1 — 21 = 11 · 11 k + 20 k — 1 = 11 · 11 k + 20 k — 21 — 200 k + 230 = = 11 · 11 k + 20 k — 21 — 10 · 20 k — 23

Выражение 11 · 11 k + 20 k — 21 в данной разности можно разделить на 10 , поскольку такое деление возможно и для 11 k + 20 k — 21 , а 10 · 20 k — 23 тоже делится на 10 , потому что это выражение содержит множитель 10 . Из этого мы можем заключить, что на 10 делится вся разность. Это и будет доказательством того, что 11 n + 20 n — 21 делится на 10 при любом натуральном значении n.

Если нам нужно проверить, делится ли на 10 многочлен с переменной n , допускается следующий подход: доказываем, что при n = 10 · m , n = 10 · m + 1 , … , n = 10 · m + 9 , где m – целое число, значение исходного выражения можно разделить на 10 . Это докажет нам делимость такого выражения при любом целом n . Несколько примеров доказательств, где используется такой способ, можно найти в статье о других случаях делимости на три.

Признаки делимости чисел

В данной публикации мы рассмотрим признаки делимости на числа от 2 до 11, сопроводив их примерами для лучшего понимания.

Признак делимости – это алгоритм, используя который можно сравнительно быстро определить, является ли рассматриваемое число кратным заранее заданному (т.е. делится ли на него без остатка).

  • Признак делимости на 2
  • Признак делимости на 3
  • Признак делимости на 4
  • Признак делимости на 5
  • Признак делимости на 6
  • Признак делимости на 7
  • Признак делимости на 8
  • Признак делимости на 9
  • Признак делимости на 10
  • Признак делимости на 11

Признак делимости на 2

Число делится на 2 тогда и только тогда, когда его последняя цифра является четной, т.е. также делится на два.

Примеры:

    4, 32, 50, 112, 2174 – последние цифры этих чисел четные, значит они делятся на 2.

Признак делимости на 3

Число делится на 3 тогда и только тогда, когда сумма всех его цифр, также, делится на три.

Примеры:

    18 – делится на 3, т.к. 1+8=9, а число 9 делится на 3 (9:3=3).

Признак делимости на 4

Двузначное число

Число делится на 4 тогда и только тогда, когда сумма удвоенной цифры в разряде его десятков и цифры в разряде единиц, также, делится на четыре.

  • 64 – делится на 4, т.к. 6⋅2+4=16, а 16:4=4.
  • 35 – не делится на 4, т.к. 3⋅2+5=11, а .

Число разрядов больше 2

Число кратно 4, когда две его последние цифры образуют число, делящееся на четыре.

    344 – делится на 4, т.к. 44 кратно 4 (по алгоритму выше: 4⋅2+4=12, 12:4=3).

Примечание:

Число делится на 4 без остатка, если:

  • в его последнем разряде стоят цифры 0, 4 или 8, а предпоследний разряд при этом является четным;
  • в последнем разряде – 2 или 6, а в предпоследнем – нечетные цифры.

Признак делимости на 5

Число делится на 5 тогда и только тогда, когда его последняя цифра – это 0 или 5.

Примеры:

    10, 65, 125, 300, 3480 – делятся на 5, т.к. оканчиваются на 0 или 5.

Признак делимости на 6

Число делится на 6 тогда и только тогда, когда он одновременно кратно и двум, и трем (см. признаки выше).

Примеры:

  • 486 – делится на 6, т.к. делится на 2 (последняя цифра 6 – четная) и на 3 (4+8+6=18, 18:3=6).
  • 712 – не делится на 6, т.к. оно кратно только 2.
  • 1345 – не делится на 6, т.к. не является кратным ни 2, ни 3.

Признак делимости на 7

Число делится на 7 тогда и только тогда, когда сумма утроенного числа его десятков и цифры в разряде единиц, также, делится на семь.

  • 91 – делится на 7, т.к. 9⋅3+1=28, а 28:7=4.
  • 105 – делится на 7, т.к. 10⋅3+5=35, а 35:7=5 (в числе 105 – десять десятков).
  • 812 – делится на 7. Здесь следующая цепочка: 81⋅3+2=245, 24⋅3+5=77, 7⋅3+7=28, а 28:7=4.
  • 302 – не делится на 7, т.к. 30⋅3+2=92, 9⋅3+2=29, а число 29 на 7 не делится.

Признак делимости на 8

Трехзначное число

Число делится на 8 тогда и только тогда, когда сумма цифры в разряде единиц, удвоенной цифры в разряде десятков и учетверенной в разряде сотен делится на восемь.

  • 264 – делится 8, т.к. 2⋅4+6⋅2+4=24, а 24:8=3.
  • 716 – не делится 8, т.к. 7⋅4+1⋅2+6=36, а .

Число разрядов больше 3

Число делится на 8, когда три последние цифры образуют число, делящееся на 8.

  • 2336 – делится на 8, т.к. 336 кратно 8.
  • 12547 – не кратно 8, т.к. 547 не делится без остатка на восемь.

Признак делимости на 9

Число делится на 9 тогда и только тогда, когда сумма всех его цифр, также, делится на девять.

Примеры:

  • 324 – делится на 9, т.к. 3+2+4=9, а 9:9=1.
  • 921 – не делится на 9, т.к. 9+2+1=12, а

Признак делимости на 10

Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Примеры:

  • 10, 110, 1500, 12760 – кратные 10 числа, последняя цифра – 0.
  • 53, 117, 1254, 2763 – не делятся на 10.

Признак делимости на 11

Число делится на 11 тогда и только тогда, когда модуль разности сумм четных и нечетных разрядов равен нулю или делится на одиннадцать.

Как это кратно 10?

Пиши ответы и зарабатывай! Вамбер платит до 2.5 руб. за каждый ответ. Всё что нужно — это пройти регистрацию и писать хорошие ответы. Платим каждую неделю на сотовый телефон или yoomoney (Яндекс Деньги). Правила здесь.

Кратность того или иного числа другому означает, что данное число делится на то, которому кратно. Например, на 2 делятся все четные числа — 2, 4, 6, 8 и так далее. С числом 10 та же самая история. Кратными ему являются те числа, которые делятся на 10 — 20, 30, 40, 50 и так далее до бесконечности.

Вы можете войти или зарегистрироваться, чтобы добавить ответ и получить бонус.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *