Калькулятор периметра вписанного в круг квадрата
Для того что бы найти периметр вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.
Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:
- либо площадь круга, обозначаемая буквой S,
- либо периметр круга, обозначаемый буквой P,
- либо радиус круга, обозначаемый буквой R,
- либо диаметр круга, обозначаемый буквой D.
Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой
Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга
1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,
мы можем узнать длину сторон квадрата используя теорему Пифагора
после того как мы получили значение длины стороны вписанного квадрата равную a, для получения его периметра нам необходимо полученное значение умножить на 4.
Как найти периметр квадрата
Квадрат — это правильный четырехугольник, все его стороны и углы равны.
Про него также говорят, что это частный случай прямоугольника или ромба.
Периметр квадрата — это сумма длин всех его сторон или произведение одной его стороны на 4.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Способы вычисления
Для вычисления периметра квадрата применяется несколько видов несложных формул.
По длине стороны
Самый простой способ, если известна величина одной из его сторон. Сразу вспоминаем, что мы имеем дело с правильным четырехугольником, и подставляем значение в уравнение:
где \(a\) — это сторона фигуры.
По длине диагонали
Если известна только диагональ правильного прямоугольника, формула для нахождения суммы всех его ребер будет выглядеть так:
что следует из соотношения длин стороны и диагонали \(d=a\sqrt2\)
По площади
Зная площадь фигуры, найти ее периметр можно так:
По радиусу описанной окружности
Радиус описанной вокруг квадрата окружности — это половина его диагонали. Формула для нахождения P в данном случае:
где R — радиус данной окружности.
По радиусу вписанной окружности
Радиус вписанной окружности — это половина величины ребра правильного прямоугольника. Таким образом, уравнение для нахождения P выглядит так:
где r — радиус вписанной окружности.
Найти P квадрата, если его ребро a равно 5 см.
Так как P = 4a, подставляем сюда известное значение, и получается \(P = 4\times5= 20\ см.\)
Узнать P правильного четырехугольника, если его диагональ d равна 6 см.
Используем формулу \(P\;=\;2d\sqrt2\) и подставляем известное значение. Получается: \(P = 2 * 6\sqrt2\ = 12\sqrt2\ см.\)
Ответ: \(12\sqrt2\ см.\)
Площадь квадрата равна 16 см². Каков периметр?
Мы знаем, что \(P\;=\;4\sqrt S\\\) . Значит, подставляя значение в формулу \(P\;=\;4\sqrt S\\\) , мы имеем: \(P\;=\;4\sqrt 16\ = 4\times4\ = 16\) см.
Известно, что 1/2 диагонали правильного прямоугольника составляет \(9\sqrt2\\ \) см. Вычислить P.
1/2 диагонали имеющейся фигуры — это как раз радиус описанной окружности. Подставляем значение в уравнение \(P\;=\;4R\sqrt2\\\) . Получается: \(P\;=\;4R\sqrt2\ = 4\times9\sqrt2\times\sqrt2\ = 72\) см.
Дан квадрат и вписанная в него окружность. Половина стороны a фигуры равна 7 см, посчитать P.
Так как половина стороны данной фигуры — это радиус вписанной в нее окружности. Используем метод нахождения по радиусу вписанной окружности: \(P\;=\;8r\\\) . Подставляем известное значение: \(P\;=\;8r\ = 8\times7\ = 56\ см.\)
Периметр квадрата
Периметр квадрата рассчитывается довольно просто, но если вы забыли формулу или не имеете под рукой калькулятора, мы собрали для вас формулы для расчета периметра квадрата и онлайн калькулятор, который рассчитает периметр по длине стороны, диаметру, радиусам вписанной или описанной окружности, площади.
Содержание:
Квадрат — четырехугольник, у которого все стороны равны и все углы равны (прямые, 90 градусов). Квадрат так же называют правильным четырехугольником. Квадрат является частным случаем прямоугольника и ромба.
Кроме квадрата на сайте вы можете найти периметр ромба, прямоугольника, параллелограмма.
Формула периметра квадрата через длину стороны
a — сторона квадрата
Формула периметра квадрата через диагональ
d — диагональ квадрата
Формула периметра квадрата через площадь
S — площадь квадрата
Формула периметра квадрата через радиус описанной окружности
R — радиус описанной около квадрата окружности
Формула периметра квадрата через радиус вписанной окружности
r — радиус вписанной в квадрат окружности
Примеры задач на нахождение периметра квадрата
Среди формул для решения этой задачи используем наиболее подходящую формулу №4. В условии сказано про квадрат, вписанный в окружность. Но при этом окружность будет описана около квадрата. Именно поэтому мы используем эту формулу. Подставим в нее известный из условия радиус вписанной окружности (в нашем случае он будет являться радиусом описанной окружности):
P = 4\sqrt <2>\cdot R = 4\sqrt <2>\cdot 4\sqrt <2>= (<4\sqrt<2>>)^2 = <4^2 \cdot (<\sqrt<2>>)^2> = 16 \cdot 2 = 32 \: см
Проверить полученный ответ можно с помощью калькулятора . Однако, радиус задан не просто числом, а выражением с квадратным корнем — 4√2. К счастью, наш калькулятор может анализировать математические выражения и производить с ними вычисления. Так как на клавиатуре компьютера нет знака квадратного корня, ввести значение радиуса необходимо в таком виде — 4*sqrt(2).
Чтобы решить эту задачу используем первую формулу:
P = 4 \cdot a = 4 \cdot 13 = 52 \: см
Проверить ответ поможет калькулятор .
Для решения этой задачи также используем первую формулу:
P = 4 \cdot a = 4 \cdot 5 = 20 \: см
Проверить ответ поможет калькулятор .
При решении этой задачи воспользуемся формулой №2:
P = 2 \sqrt <2>\cdot d = 2 \sqrt <2>\cdot 2 \sqrt <2>= (<2 \sqrt<2>>)^2 = 2^2 \cdot (<\sqrt<2>>)^2 = 4 \cdot 2 = 8 \: см
Проверить ответ к этой задаче можно с помощью калькулятора . Диагональ задана выражением с квадратным корнем, введем ее в виде, который сможет распознать наш калькулятор — 2 * sqrt(2).
Онлайн калькулятор периметра вписанного в круг квадрата. Как узнать периметр вписанного в круг квадрата.
Для того что бы найти периметр вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.
Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:
- либо площадь круга, обозначаемая буквой S,
- либо периметр круга, обозначаемый буквой P,
- либо радиус круга, обозначаемый буквой R,
- либо диаметр круга, обозначаемый буквой D.
Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой
Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга
1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:
Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,
мы можем узнать длину сторон квадрата используя теорему Пифагора
после того как мы получили значение длины стороны вписанного квадрата равную a, для получения его периметра нам необходимо полученное значение умножить на 4.