Как записать экспоненту
Перейти к содержимому

Как записать экспоненту

  • автор:

Как записать экспоненту

Онлайн калькулятор для перевода чисел в экспоненциальный вид и обратно, другим языком для вычисления чисел с буквой E.
На компьютере (в частности в тексте компьютерных программ) экспоненциальную запись записывают в виде MEp (пример 1e-10), где:

M — мантисса,
E (exponent) — буква E в числе, означающая «*10^» («…умножить на десять в степени…»),
p — порядок.
Это необходимо для представлении очень больших и очень малых чисел, а также для унификации их написания.

Многие пользователи калькуляторов столкнулись с вопросом: Что означает буква «E» в цифровом калькуляторе?
Это Экспоненциа́льная за́пись— представление действительных чисел в виде мантиссы и порядка. Удобна для записи очень больших и очень малых чисел.

Например, расшифруем эти числа:
Е — это 10, цифры после Е — показатель степени, в который возводится 10.
0.66E004 = 0,66 * 10^4 = 0.66*10000 = 6600
0.66E-007 = 0.66 * 10^(-7) = 0.66 * 0.0000001 = 0.000000066
0.66E11 = 0.66 * 10^11 = 0.66 * 100000000000 = 66000000000

Также калькулятор способен не только расшифровать большие или малые числа с буквой E но и сделать обратное действие, т.е перевести числа в экспоненциальную запись.

Вычислим числа с буквой «е«:
1e-10 = 0.0000000001 — ноль целых одна десятимиллиардная
6e+17 = -600000000000000000000
Есть число 2.6E3. Что означает буква Е = 2 600 — две тысячи шестьсот
1Е+6 = равен миллиону 1 000 000

Экспонента: определение, формула, свойства, график

В данной публикации мы рассмотрим, что такое экспонента, как выглядит ее график, приведем формулу, с помощью которой задается экспоненциальная функция, а также перечислим ее основные свойства.

  • Определение и формула экспоненты
  • График экспоненты
  • Свойства экспоненциальной функции

Определение и формула экспоненты

Экспонента – это показательная функция, формула которой выглядит следующим образом:

Экспоненциальная функция (так часто называют экспоненту) может быть определена:

Через предел (lim):

Экспонента через предел

Через степенной ряд Тейлора:

Экспонента через степенной ряд Тейлора

График экспоненты

Ниже представлен график экспоненциальной функции

График экспоненты

Как мы видим график (синяя линия) является выпуклым, строго возрастающим, т.е. при увеличении x увеличивается значение y .

Асимптотой является ось абсцисс, т.е. график во II четверти координатной плоскости стремится к оси Ox , но никогда не пересечет и не коснется ее.

Пересечение с осью ординат Oy – в точке , так как

Касательная (зеленая линия) к экспоненте проходит под углом 45 градусов в точке касания.

Функция EXP (экспонента) в Microsoft Excel

Экспонента в Microsoft Excel

Одной из самых известных показательных функций в математике является экспонента. Она представляет собой число Эйлера, возведенное в указанную степень. В Экселе существует отдельный оператор, позволяющий её вычислить. Давайте разберемся, как его можно использовать на практике.

Вычисление экспоненты в Эксель

Экспонента является числом Эйлера, возведенным в заданную степень. Само число Эйлера приблизительно равно 2,718281828. Иногда его именуют также числом Непера. Функция экспоненты выглядит следующим образом:

где e – это число Эйлера, а n – степень возведения.

Для вычисления данного показателя в Экселе применяется отдельный оператор – EXP. Кроме того, эту функцию можно отобразить в виде графика. О работе с этими инструментами мы и поговорим далее.

Способ 1: вычисление экспоненты при помощи ручного ввода функции

Для того чтобы рассчитать в Экселе величину экспоненты для значения e в указанной степени, нужно воспользоваться специальным оператором EXP. Его синтаксис является следующим:

То есть, эта формула содержит только один аргумент. Он как раз и представляет собой степень, в которую нужно возвести число Эйлера. Этот аргумент может быть как в виде числового значения, так и принимать вид ссылки на ячейку, содержащую в себе указатель степени.

    Таким образом для того, чтобы рассчитать экспоненту для третьей степени, нам достаточно ввести в строку формул или в любую незаполненную ячейку на листе следующее выражение:

Расчет экспоненты в Microsoft Excel

Результат расчета экспоненты в Microsoft Excel

Способ 2: использование Мастера функций

Хотя синтаксис расчета экспоненты предельно прост, некоторые пользователи предпочитают применять Мастер функций. Рассмотрим, как это делается на примере.

    Устанавливаем курсор на ту ячейку, где должен будет выводиться итоговый результат расчета. Щелкаем по значку в виде пиктограммы «Вставить функцию» слева от строки формул.

Переход в Мастер функций в Microsoft Excel

Переход к аргументам функции EXP в Microsoft Excel

Аргументы функции EXP в Microsoft Excel

Результат расчета функции EXP в Microsoft Excel

Если в качестве аргумента используется ссылка на ячейку, которая содержит показатель степени, то нужно поставить курсор в поле «Число» и просто выделить ту ячейку на листе. Её координаты тут же отобразятся в поле. После этого для расчета результата щелкаем по кнопке «OK».

Аргументы функции EXP в виде координат в Microsoft Excel

Способ 3: построение графика

Кроме того, в Экселе существует возможность построить график, взяв за основу результаты, полученные вследствие вычисления экспоненты. Для построения графика на листе должны уже иметься рассчитанные значения экспоненты различных степеней. Произвести их вычисление можно одним из способов, которые описаны выше.

    Выделяем диапазон, в котором представлены экспоненты. Переходим во вкладку «Вставка». На ленте в группе настроек «Диаграммы» нажимаем на кнопку «График». Открывается список графиков. Выбирайте тот тип, который считаете более подходящим для выполнения конкретных задач.

Потроение графика в Microsoft Excel

График построен в Microsoft Excel

Как видим, рассчитать экспоненту в Экселе при помощи функции EXP элементарно просто. Эту процедуру легко произвести как в ручном режиме, так и посредством Мастера функций. Кроме того, программа предоставляет инструменты для построения графика на основе этих расчетов.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.

Экспонента: определение, формула, свойства, график

В данной публикации мы рассмотрим, что такое экспонента, как выглядит ее график, приведем формулу, с помощью которой задается экспоненциальная функция, а также перечислим ее основные свойства.

  • Определение и формула экспоненты
  • График экспоненты
  • Свойства экспоненциальной функции

Определение и формула экспоненты

Экспонента – это показательная функция, формула которой выглядит следующим образом:

Экспоненциальная функция (так часто называют экспоненту) может быть определена:

Через предел (lim):

Экспонента через предел

Через степенной ряд Тейлора:

Экспонента через степенной ряд Тейлора

График экспоненты

Ниже представлен график экспоненциальной функции

График экспоненты

Как мы видим график (синяя линия) является выпуклым, строго возрастающим, т.е. при увеличении x увеличивается значение y .

Асимптотой является ось абсцисс, т.е. график во II четверти координатной плоскости стремится к оси Ox , но никогда не пересечет и не коснется ее.

Пересечение с осью ординат Oy – в точке , так как

Касательная (зеленая линия) к экспоненте проходит под углом 45 градусов в точке касания.

Как выразить степень экспоненты

Число e определяется через предел последовательности. Это, так называемый, второй замечательный предел:
.

Также число e можно представить в виде ряда:
.

График экспоненты

На графике представлена экспонента, е в степени х.
y ( x ) = е х
На графике видно, что экспонента монотонно возрастает.

Формулы

Основные формулы такие же, как и для показательной функции с основанием степени е .

Выражение показательной функции с произвольным основанием степени a через экспоненту:
.

Частные значения

Пусть y ( x ) = e x . Тогда
.

Свойства экспоненты

Экспонента обладает свойствами показательной функции с основанием степени е > 1 .

Область определения, множество значений

Экспонента y ( x ) = e x определена для всех x .
Ее область определения:
– ∞ .
Ее множество значений:
0 .

Экстремумы, возрастание, убывание

Экспонента является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = е х
Область определения – ∞
Область значений
Монотонность монотонно возрастает
Нули, y = 0 нет
Точки пересечения с осью ординат, x = 0 y = 1
+ ∞

Обратная функция

Производная экспоненты

Производная е в степени х равна е в степени х:
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Комплексные числа

Действия с комплексными числами осуществляются при помощи формулы Эйлера:
,
где есть мнимая единица:
.

Выражения через гиперболические функции

Выражения через тригонометрические функции

Разложение в степенной ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 25-02-2014 Изменено: 09-06-2018

Число е является важной математической константой, которая является основой натурального логарифма. Число е примерно равно 2,71828 с пределом (1 + 1/n) n при n , стремящемся к бесконечности.

Также данное число называют как число Эйлера или число Непера.

Экспонента — показательная функция f(x) = exp (x) = e x , где е — число Эйлера.

Введите значение х, чтобы найти значение экспоненциальной функции e x

Расчет значения экспоненциальной функции онлайн.

При возведении числа Эйлера (е) в нулевую степень ответ будет равняться 1. При возведении в степень, которая будет больше единицы, ответ будет больше первоначального. Если степень будет больше нуля, но меньше 1 (например, 0,5), то ответ будет больше 1, но меньше первоначального (числа е). При возведении экспоненты в отрицательную степень нужно 1 делить на число е в заданной степени, но со знаком плюс.

Теорию функций e z , sin z, cos z комплексного аргумента построил Л.Эйлер и систематически изложил ее в своем классическом труде «Введение в анализ бесконечно малых» в 1748 г. В следующем году он опубликовал теорию логарифма комплексного аргумента.

1. Начнем с показательной функции, которую Эйлер определил как сумму степенного ряда

Ряд сходится, причем абсолютно, при любом zeC. Действительно, составьте ряд из модулей членов ряда (6.1) и примените к нему признак Далам- бера. Такое определение показательной функции комплексного переменного положило начало анализа в комплексной области — ТФКП.

В литературе можно найти определение функции (6.1) тем же предельным соотношением, что и в действительном анализе:

но здесь исключительно используется представление (6.1). Важно, что для комплексных значений аргумента остается верной теорема сложения:

Проверим это свойство. Имеем

Раскроем скобки и будем располагать слагаемые по группам, в которых сумма показателей степеней при а и b одна и та же. Получим

При чисто мнимом z — yi согласно (6.1) имеем Или, отделяя вещественную часть от мнимой,

Суммы рядов в скобках равны соответственно cos^,sin>>, и мы приходим к замечательной формуле Эйлера

Заметим, что этой формулой, в которой левая часть называлась символом Эйлера, мы неоднократно пользовались с целью компактификации вычислений с комплексными числами. До сих пор символ е ул употреблялся для сокращенного обозначения правой части формулы, а теперь можем его понимать как мнимую степень числа е. Например, равенство е я = -1 всегда вызывало восторг у математиков — ведь вроде бы несложной зависимостью оно увязывает между собой две знаменитые константы.

Из теоремы сложения при z = х + yi получим е : = е хе у> , или

Заметим, что в учебной литературе это равенство часто берется за определение показательной функции комплексного переменного. Оно очень удобное, с его помощью можно, например, доказать голоморфность экспоненты во всей комплексной плоскости. В самом деле, полагая е г = t/ + /v, из (6.2) находим, что и = е х cosy,v = е х sin у. Эти функции везде дифференцируемы в смысле действительного анализа и для них выполняются условия Коши-Римана:

Сохраняется формула дифференцирования, знакомая из действительного анализа. Воспользуемся одной из записей комплексной производной:

При действительных значениях аргумента показательная функция положительная и, следовательно, в ноль не обращается. Из (6.2) заключаем, что е : ф 0 Vz е С (ведь не могут косинус и синус одновременно обратиться в ноль).

Из теоремы сложения и формулы Эйлера вытекает периодичность экспоненты с мнимым основным периодом 2 я7. Действительно,

е г * 2я> =е : ? е 2т =е : 1 = е ; , т.е. число 2я7 является периодом. Проверим, что он основной: ему кратен любой другой период Т. Пусть е г+ : . Умножая обе части на е

: , получим е г =. Полагая T = Ty+iT2, получим е 7| (cosТ2 +/sin Т2) = 1. Отсюда е 7 ‘ cosТ2 = 1, sin Т2= 0 согласно равенству двух комплексных чисел. Из полученных соотношений следует

2. Тригонометрические функции комплексного переменного. Следуя Эйлеру, положим

Нетрудно проверить, что эти ряды сходятся во всей комплексной плоскости.

Запишем равенство (6.1), заменяя в нем z на iz. Под ним выпишем (6.1) с заменой z на -iz. Складывая и вычитая полученные равенства, придем к соотношениям е ,: +е

а = 2cos z, е а -е

Эти формулы целиком сводят изучение тригонометрического синуса и косинуса к изучению показательной функции. Например, дифференцируя почленно вторую из них, придем к известному из анализа правилу дифференцирования (sin z)’ = cosz.

Основное тригонометрическое тождество оказывается справедливым. Возведите в квадраты обе части в (6.4) и затем сложите их; увидите единицу.

В комплексной области сохраняются теоремы сложения, знакомые еще со школы. Например, sin(a + 6) = sintf-cos6 + cosa*sin&. Для доказательства достаточно проверить, что

Выполнив операции, указанные в правой части, придем к рассматриваемой теореме сложения.

Обратим внимание на то, что синус и косинус в комплексной плоскости не являются ограниченными функциями. Например, положим z = it (/ > 0), тогда

что вовсе не согласуется с ограниченностью.

Как известно, в действительной области нули синуса исчерпываются числами, кратными /г, а нули косинуса содержатся в формуле

г = — + кл (к gZ). Возникает вопрос: нс появятся ли у этих функций, кроме

указанных, еще другие, комплексные нули при выходе на комплексную плоскость? Ниже мы увидим, других нулей нет.

Подводя итоги, мы видим, что рассмотренные выше функции можно определить и для комплексного аргумента и что известные из школьного курса формулы остаются справедливыми. Но обнаружился новый факт: показательная функция периодическая, хотя период мнимый. Такая периодичность в школьном курсе и нс могла быть обнаружена, так как в нем изучались только функции действительного аргумента.

3. Гиперболические функции комплексного переменного. В духе равенств (6.3) положим

Это — соответственно косинус гиперболический и синус гиперболический комплексного числа z. Ряды (6.5) сходятся, как и выше, при любых значениях Z.

Заменим в (6.1) z на —z и к исходному равенству прибавим полученное. По аналогии с (6.4) получим следующие выражения рассматриваемых функций через экспоненту:

При действительных z- х эти равенства чаще всего и берутся в качестве определений. Соответствующие графики представлены на рис. 12.

Из равенств (6.6) и устанавливаются основные свойства гиперболических функций. Исторически они были известны и до Эйлера. Возникая из ряда задач математической физики, обыкновенных дифференциальных уравнений, они широко использовались в приложениях, например, в электротехни- В литературе встречаются обозначения этих функций, когда аргумент заключается в скобки.

ке, сопротивлении материалов и т.д. Важную роль эти функции играют в геометрии Лобачевского.

Формулы (6.4) и (6.6) позволяют установить связи между тригонометрическими и гиперболическими функциями:

При мер. Вычислить приближенно с 4D sin(l -2/).

Решение. Искомое выражение равно sin 1 cos2/-cosl sin2/. Или, в свете предыдущих равенств, получим sin 1 c/?2-/cosl shl. Ответ: 3.1659-1.9595/.

Пример. Доказать, что нули функции sinz исчерпываются формулой z — 7Гк (k^Z).

Решение. Пусть sin z = sin(.v + yi) = 0 sin * • cosyi + cos*• sinyi = 0. Ho здесь cosyi=chyy sin yi = ishy, поэтому sin xchy+/cos* • shy = 0. Отсюда заключаем, что sin*c/?y = 0, cos*-shy = 0. Так как гиперболический косинус при действительном значении аргумента в нуль не обращается (рис. 12), то sin* = 0=>* = як <к eZ).Тогда из второго уравнения

cosxk s/jy = 0 =>shy = 0 у = 0. Итак, все корни уравнения sinz = 0 заключаются в формуле z = x + iy = 7rk. К такому же результату привела бы вторая формула в (6.4). Советуем читателю проделать более краткие выкладки.

4. Логарифмы и общая степенная функция.

В области действительных чисел ноль и отрицательные числа логарифмов не имеют. Выясним, как обстоит дело при переходе в область комплексных чисел. Определим понятие натурального логарифма комплексного числа так же, как в действительном анализе.

Число w называется натуральным логарифмом данного комплексного числа z, если е" = z.

Исторически первая удовлетворительная теория логарифма была дана Л.Эйлером в 1749 г., который исходил из следующего определения:

Поскольку показательная функция нс принимает нулевого значения, то ноль не имеет логарифмов в комплексной области. В силу периодичности экспоненты у числа z логарифм не единственный. Например, для z = l в качестве логарифмов можно взять числа -w—2nki (keZ). Множество всех натуральных логарифмов данного числа z^O обозначается символом Lnz.

В равенстве e w = z положим w=u + iv. Обозначим через г модуль данного комплексного числа z^O, через (р — его главное значение аргумента. Получим

Так как модули левой и правой частей одинаковы, то отсюда е и =/* и = In г. Здесь под правой частью последнего равенства следует понимать обычный натуральный логарифм положительного числа г. Далее из равенства (*) заключаем, что аргументы чисел справа и слева могут отличаться друг от друга только на кратное : v = + 2кл (к eZ). Поэтому множество всех логарифмов описывается формулой

Значение логарифма, равное In | z|+/argz, называют главным значением логарифма и обозначают символом In z. Поэтому вес значения Lnz получаются из главного добавлением кратных 2лi.

Пример, а). Найти Lnz при r = l + i. б). Чему равен Ln(-1) ?

Решение, а). Имеем: | z I = Jl, argz = —. Ответ: In л/2 н—/’ + +2&я/.

Для чисел w,zeC <0>по правилам «в действительной области логарифм произведения равен сумме логарифмов», «в комплексном анализе аргумент произведения равен сумме аргументов» запишем следующие равенства:

Получается, что первое правило распространяется и на комплексную область: Ln(wz) = Lnw+ Lnz. Это равенство надо понимать в следующем смысле: множество, составленное из всевозможных сумм двух слагаемых, одно из которых принадлежит Lnw, а другое Lnz, совпадает с множеством значений Ln(wz).

Итак, мы видим, что логарифмы можно находить не только положительных чисел, как это делается в школе, но и для комплексных чисел. Обнаруживается, что логарифмическая функция (6.7) не однозначная, как это имеет место в действительном анализе, а многозначная: каждое комплексное число, отличное от нуля, имеет бесконечное множество логарифмов. В частности, имеют логарифмы и отрицательные числа, но при этом все они комплексные. Положительные же числа, кроме действительного значения логарифма, рассматриваемого в школьном курсе, имеет еще счетное множество комплексных логарифмов.

Обратимся к дифференцированию комплексного логарифма. Ясно, что достаточно уметь находить производную главного значения (ибо производные от констант — нули). Дифференцируя (по z ) равенство е и = z, получим

е* -м/ = 1 => w = —. Пришли к знакомой формуле из действительного анализа

Заметим, что эта формула верна всюду, где главное значение логарифма непрерывно. Разрывы происходят лишь в точках отрицательной действительной полуоси, ибо в них, как мы видели ранее, разрывно главное значение аргумента вследствие определения его на оговоренном промежутке (-тг,тг].

В действительном анализе имеет место равенство а ь =е Ша . В комплексном анализе пользуются аналогичной формулой, но она выполняет уже роль определения а ь . А именно, полагают

I

Так, при ненулевых а,Ь определена степень с произвольным показателем. Так как логарифм имеет бесконечное множество значений, то и выражение а ь в общем случае — также, но в частных случаях они могут все совпадать (если b — целое число) или среди них может быть только конечное число различных значений (если степень b является рациональным числом).

Рассмотрим, например, V. Согласно (6.8) получим е =е 2 , где п

целое число. Неискушенному этот пример покажется очень удивительным: мнимое число возводится в мнимую степень и получается бесконечно много значений, да еще все они — действительные числа!

Другой пример: найти согласно (6.8) величину / 3 . Ответ

согласуется с перемножением мнимой единицы самой на себя три раза.

Вычислим w=8 3 . Имеем: w = e 3 =е 3 •е 3 . Здесь первый

множитель равен 2, а второй принимает лишь три различные значения (например, при к = 0,1,2. Далее начнется повтор).

5. Аркфункции и ареафункции комплексного аргумента.

Аркфункцня (от лат. arcus — дуга) — то же, что обратная тригонометрическая функция, т.е. одна из функций: арксинус, арккосинус, арктангенс, . ; соответствующие обозначения Arc sin z, Arccosz, Arctgz, .

Ареафункция (от лат. area — площадь) — то же, что обратная гиперболическая функция, т.е. одна из функций: ареасинус гиперболический (Arshz)y ареакосинус гиперболический (Arch-), аретангенс гиперболический (Arthz) и т.д.

Эти обозначения, как и предыдущие, не являются общепринятыми, возможны и другие написания рассматриваемых функций. Они, будучи обратными к многолистным функциям (синус, косинус, . ), являются многозначными и выражаются через корни и логарифмы. Найдем такое выражение, например, для арккосинуса — решим при заданном z уравнение cosw=z.

Или, что то же, уравнение — (е ,и +е — ‘") = z как квадратное относительно e ,w .

(мы нс пишем здесь перед корнем обычный знак ± f ибо в комплексном анализе квадратный корень и так имеет два значения). Из последнего равенства получим

Подобным же способом получаются выражения для ареафункций:

Укажем еще группу формул, выражающих ареафункции через арк- функции:

В заключение рассмотрим следующий пример.

При мер. Решить уравнение sinw=2.

Решение. Согласно (6.9) имеем w= Arcsin2 = -iLn <2i + у1 1 -2 2 ). Здесь радикал принимает два значения ± л/З /. Находим логарифм. Так как числа 2 ± -Уз оба положительные, то он равен

Следовательно, w = — + 2лк + i 1п(2 + v’3 , так как (2 ± л/З) ‘=2 + л/3. Читателю рекомендуем сделать проверку. Использовать теорему сложения в виде

и равенство cos iz = chz.

Задачи к главе 6

6.1. Доказать, что число п является основным периодом функции sinz

4.7 – Введение в экспоненциальную запись

Прежде чем мы поговорим о нашей следующей теме, пройдемся по теме экспоненциальной записи.

Экспоненциальная запись (научная нотация) – это удобное сокращение для краткого написания длинных чисел. И хотя сначала экспоненциальная запись может показаться чуждой, ее понимание поможет вам понять, как работают числа с плавающей запятой, и, что более важно, каковы их ограничения.

Числа в экспоненциальном представлении имеют следующий вид: мантисса x 10 порядок . Например, в экспоненциальном представлении 1,2 x 10 4 , 1,2 – это мантисса, а 4 – порядок (показатель степени). Поскольку 10 4 означает 10 000, 1,2 x 10 4 означает 12 000.

По соглашению, числа в экспоненциальном представлении записываются с одной цифрой перед десятичной запятой, а остальные цифры – после нее.

Рассмотрим массу Земли. В десятичной системе счисления мы запишем это как 5973600000000000000000000 кг. Это действительно большое число (слишком большое, чтобы поместиться даже в 8-байтовое целочисленное значение). Его также трудно прочитать (это 19 или 20 нулей?). Даже с разделителями ( 5 973 600 000 000 000 000 000 000 ) число всё равно трудно прочитать.

В экспоненциальном представлении оно будет записано как 5,9736 x 10 24 кг, что намного легче прочитать. Экспоненциальная запись имеет дополнительное преимущество, поскольку упрощает сравнение двух действительно больших или действительно маленьких чисел, просто сравнивая показатель степени.

Поскольку в C++ может быть сложно ввести или отобразить показатели степени, для обозначения части выражения «умноженное на 10 в степени» мы используем букву ' e ' (или иногда ' E '). Например, 1,2 x 10 4 будет записано как 1.2e4 , а 5,9736 x 10 24 будет записано как 5.9736e24 .

Для чисел меньше 1 показатель степени может быть отрицательным. Число 5e-2 эквивалентно 5 x 10 -2 , что составляет 5/10 2 или 0,05 . Масса электрона составляет 9.1093822e-31 кг.

Как преобразовывать числа в экспоненциальное представление

Используйте следующую процедуру:

  • ваш показатель степени начинается с нуля;
  • сдвиньте десятичную запятую так, чтобы слева от нее была только одна ненулевая цифра;
    • каждый знак, на который вы сдвигаете десятичную запятую влево, увеличивает показатель степени на 1;
    • каждый знак, на который вы сдвигаете десятичную запятую вправо, уменьшает показатель степени на 1;

    Вот несколько примеров:

    Самое важное, что нужно понять: цифры в мантиссе (часть перед "е") называются значащими цифрами. Количество значащих цифр определяет точность числа. Чем больше цифр в мантиссе, тем точнее число.

    Точность и конечные нули после десятичной запятой

    Рассмотрим случай, когда мы просим двух лаборантов взвесить одно и то же яблоко. Один возвращается и говорит, что яблоко весит 87 грамм. Другой возвращается и говорит, что яблоко весит 87,00 грамм. Предположим, что взвешивание правильное. В первом случае фактический вес яблока может составлять от 86,50 до 87,49 грамма. Может быть, точность весов была 1 грамм. Или, может быть, наш помощник немного округлил. Во втором случае мы в большей степени уверены в фактическом весе яблока (оно весит от 86,9950 до 87,0049 граммов, где значительно меньше вариативности).

    Поэтому в стандартной экспоненциальной записи мы предпочитаем оставлять конечные нули после десятичной запятой, потому что эти цифры несут полезную информацию о точности числа.

    Однако в C++ 87 и 87.00 обрабатываются одинаково, и компилятор сохранит одно и то же значение для каждого из них. Нет никаких технических причин, по которым мы должны предпочесть одно другому (хотя могут быть научные причины, если вы используете исходный код в качестве документации).

    Теперь, когда мы рассмотрели экспоненциальную запись (научную нотацию), мы готовы рассмотреть числа с плавающей запятой.

    Небольшой тест

    Вопрос 1

    Преобразуйте следующие числа в экспоненциальную запись в стиле C++ (используя e для обозначения экспоненты) и определите, сколько значащих цифр каждое имеет число (оставляйте конечные нули после десятичной запятой):

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *