Как построить двуполостный гиперболоид
Перейти к содержимому

Как построить двуполостный гиперболоид

  • автор:

math serfer .narod.ru

где , , — положительные числа.

Исследуем форму однополостного гиперболоида. Так же, как эллипсоид, он имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат.

Для построения гиперболоида найдем его сечения различными плоскостями. Найдем линию пересечения с плоскостью . На этой плоскости , поэтому

Это уравнение на плоскости задает эллипс с полуосями и (рис. 13.8). Найдем линию пересечения с плоскостью . На этой плоскости , поэтому

Это уравнение гиперболы на плоскости , где действительная полуось равна , а мнимая полуось равна . Построим эту гиперболу (рис. 13.8).

Рис. 13 . 8 .Сечения однополостного гиперболоида двумя плоскостями

Сечение плоскостью также является гиперболой с уравнением

Нарисуем и эту гиперболу, но чтобы не перегружать чертеж дополнительными линиями, не будем изображать ее асимптоты и уберем асимптоты в сечении плоскостью (рис. 13.9).

Найдем линии пересечения поверхности с плоскостями , . Уравнения этих линий

Первое уравнение преобразуем к виду

( 13 .7)

где , . Уравнение (13.7) является уравнением эллипса, подобного эллипсу в плоскости , с коэффициентом подобия и полуосями и . Нарисуем полученные сечения (рис. 13.9).

Рис. 13 . 9 .Изображение однополостного гиперболоида с помощью сечений

Привычное для глаза изображение однополостного гиперболоида приведено на рисунке 13.10.

Рис. 13 . 10 .Однополостный гиперболоид

Если в уравнении (13.6) , то сечения гиперболоида плоскостями, параллельными плоскости , являются окружностями. В этом случае поверхность называется однополостным гиперболоидом вращения и может быть получена вращением гиперболы, лежащей в плоскости , вокруг оси (рис. 13.11).

Рис. 13 . 11 .Однополостный гиперболоид вращения

( 13 .8)

где , , — положительные числа.

Исследуем форму двуполостного гиперболоида. Так же, как эллипсоид и однополостный гиперболоид, он имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат.

Для построения гиперболоида найдем его сечения различными плоскостями. Найдем линию пересечения с плоскостью . На этой плоскости , поэтому

Координаты ни одной точки плоскости не могут удовлетворять данному уравнению. Следовательно, двуполостный гиперболоид не пересекает эту плоскость. Найдем линию пересечения с плоскостью . На этой плоскости , поэтому

Это уравнение гиперболы на плоскости , где действительная полуось равна , а мнимая полуось равна . Построим эту гиперболу (рис. 13.12).

Рис. 13 . 12 .Сечения двуполостного гиперболоида плоскостью

Сечение плоскостью также является гиперболой, с уравнением

Нарисуем и эту гиперболу, но чтобы не перегружать чертеж дополнительными линиями, не будем изображать ее асимптоты и уберем асимптоты в сечении плоскостью (рис. 13.13).

Найдем линии пересечения поверхности с плоскостями , . Уравнения этих линий

Очевидно, что ни одна точка не может удовлетворять этим уравнениям, если . Если или , то плоскость имеет с исследуемой поверхностью только одну точку или . Эти точки называются вершинами гиперболоида.

Пусть . Первое уравнение преобразуем к виду

( 13 .9)

где , . Уравнение (13.9) является уравнением эллипса, подобного эллипсу в плоскости , с коэффициентом подобия и полуосями и . Нарисуем полученные сечения (рис. 13.13).

Рис. 13 . 13 .Изображение двуполостного гиперболоида с помощью сечений

Привычное для глаза изображение двуполостного гиперболоида приведено на рисунке 13.14.

Рис. 13 . 14 .Двуполостный гиперболоид

Если в уравнении (13.8) , то сечения гиперболоида плоскостями, параллельными плоскости , являются окружностями. В этом случае поверхность называется двуполостным гиперболоидом вращения и может быть получена вращением гиперболы, лежащей в плоскости , вокруг оси (рис 4.15).

Поверхности второго порядка

Поверхность \(S\) называется поверхностью вращения с осью \(d\), если она составлена из окружностей, которые имеют центры на прямой \(d\) и лежат в плоскостях, перпендикулярных данной прямой.

Рассмотрим линию \(L\), которая лежит в плоскости \(P\), проходящей через ось вращения \(d\) (рис. 43), и будем вращать ее вокруг этой оси. Каждая точка линии опишет окружность, а вся линия — поверхность вращения.

Рис. 10.1. Поверхность вращения.

Выберем начало декартовой прямоугольной системы координат \(O, \boldsymbol_<1>, \boldsymbol_<2>, \boldsymbol_<3>\) на оси \(d\), вектор \(\boldsymbol_<3>\) направим вдоль \(d\), а вектор \(\boldsymbol_<1>\) поместим в плоскости \(P\). Таким образом, \(O, \boldsymbol_<1>, \boldsymbol_<3>\) — декартова система координат в плоскости \(P\). Пусть линия \(L\) имеет в этой системе координат уравнение \(f(x, y)=0\).

Рассмотрим точку \(M(x, y, z)\). Через нее проходит окружность, которая имеет центр на оси \(d\) и лежит в плоскости, перпендикулярной этой оси. Радиус окружности равен расстоянию от \(M\) до оси, то есть \(\sqrt+y^<2>>\). Точка \(M\) лежит на поверхности вращения тогда и только тогда, когда на указанной окружности имеется точка Мь принадлежащая вращаемой линии \(L\).

Точка \(M_<1>(x_<1>, y_<1>, z_<1>)\) лежит в плоскости \(P\), и потому \(y_<1>=0\). Кроме того, \(z_<1>=z\) и \(|x|=\sqrt+y^<2>>\), так как \(M_<1>\) лежит на той же окружности, что и \(M\). Координаты точки \(M_<1>\) удовлетворяют уравнению линии \(L\): \(f(x_<1>, z_<1>)=0\). Подставляя в это уравнение \(x_<1>\) и \(z_<1>\), мы получаем условие на координаты точки \(M\), необходимое и достаточное для того, чтобы \(M\) лежала на поверхности вращения \(S\): равенство
$$
f\left(\pm \sqrt+y^<2>>, z\right)=0\label
$$
должно быть выполнено хотя бы при одном из двух знаков перед корнем. Это условие, которое можно записать также в виде
$$
f\left(\sqrt+y^<2>>, z\right)f\left(-\sqrt+y^<2>>, z\right)=0,\label
$$
и является уравнением поверхности вращения линии \(L\) вокруг оси \(d\).

Эллипсоид.

Рассмотрим поверхности, которые получаются при вращении эллипса вокруг его осей симметрии. Направив вектор \(\boldsymbol_<3>\) сначала вдоль малой оси эллипса, а затем вдоль большой оси, мы получим уравнения эллипса в следующих видах:
$$
\frac>>+\frac>>=1,\ \frac>>+\frac>>=1.\nonumber
$$
(Здесь через \(c\) обозначена малая полуось эллипса.) В силу формулы \eqref уравнениями соответствующих поверхностей вращения будут
$$
\frac+y^<2>>>+\frac>>=1,\ \frac>>+\frac+y^<2>>>=1\ (a > c).\label
$$
Поверхности с такими уравнениями называются соответственно сжатым и вытянутым эллипсоидами вращения (рис. 10.2).

Рис. 10.2. Сжатый (а) и вытянутый (б) эллипсоиды вращения.

Каждую точку \(M(x, y, z)\) на сжатом эллипсоиде вращения сдвинем к плоскости \(y=0\) так, чтобы расстояние от точки до этой плоскости уменьшилось в постоянном для всех точек отношении \(\lambda < 1\). После сдвига точка попадет в положение \(M'(x’, y’, z’)\), где \(x’=x\), \(y’=y\), \(z’=z\).

Таким образом, точки эллипсоида вращения переходят в точки поверхности с уравнением
$$
\frac>>+\frac>>+\frac>>=1,\label
$$
где \(b=\lambda a\). Поверхность, которая в некоторой декартовой системе координат имеет уравнение \eqref, называется эллипсоидом (рис. 10.3). Если случайно окажется, что \(b=c\), мы получим снова эллипсоид вращения, но уже вытянутый.

Рис. 10.3. Эллипсоид.

Эллипсоид так же, как и эллипсоид вращения, из которого он получен, представляет собой замкнутую ограниченную поверхность. Из уравнения \eqref видно, что начало канонической системы координат — центр симметрии эллипсоида, а координатные плоскости — его плоскости симметрии.

Эллипсоид можно получить из сферы \(x^<2>+y^<2>+z^<2>=a^<2>\) сжатиями к плоскостям \(y=0\) и \(z=0\) в отношениях \(\lambda=b/a\) и \(\mu=c/a\).

В этой статье нам часто придется прибегать к сжатию, и мы не будем его каждый раз описывать столь подробно.

Конус второго порядка.

Рассмотрим на плоскости \(P\) пару пересекающихся прямых, задаваемую в системе координат \(O, \boldsymbol_<1>, \boldsymbol_<3>\) уравнением \(a^<2>x^<2>-c^<2>z^<2>=0\). Поверхность, получаемая вращением этой линии вокруг оси аппликат, имеет уравнение
$$
a^<2>(x^<2>+y^<2>)-c^<2>z^<2>=0\label
$$
и носит название прямого кругового конуса (рис. 10.4). Сжатие к плоскости \(y=0\) переводит прямой круговой конус в поверхность с уравнением
$$
a^<2>x^<2>+b^<2>y^<2>-c^<2>z^<2>=0\label
$$
называемую конусом второго порядка.

Обратите внимание на то, что левая часть уравнения \eqref — однородная функция, и поверхность является конусом в смысле определения, введенного ранее.

Рис. 10.4. Прямой круговой конус.

Однополостный гиперболоид.

Однополостный гиперболоид вращения — это поверхность вращения гиперболы
$$
\frac>>-\frac>>=1\nonumber
$$
вокруг той оси, которая ее не пересекает. По формуле \eqref мы получаем уравнение этой поверхности (рис. 10.5)
$$
\frac+y^<2>>>-\frac>>=1.\label
$$

Рис. 10.5. Однополостный гиперболоид вращения.

В результате сжатия однополостного гиперболоида вращения к плоскости \(y=0\) мы получаем однополостный гиперболоид с уравнением
$$
\frac>>+\frac>>-\frac>>=1.\label
$$

Интересное свойство однополостного гиперболоида — наличие у него прямолинейных образующих. Так называются прямые линии, всеми своими точками лежащие на поверхности. Через каждую точку однополостного гиперболоида проходят две прямолинейные образующие, уравнения которых можно получить следующим образом.

Покажем на примере, как найти образующие, проходящие через данную точку поверхности. Рассмотрим поверхность \(x^<2>+y^<2>-z^<2>=0\) и точку \(M_<0>(1, 1, 1)\) на ней. Подставляя координаты \(M_<0>\) в уравнения \eqref, мы получаем условия на \(\lambda\) и \(\mu\): \(2\lambda=2\mu\) и \(0 \cdot \lambda=0 \cdot \mu\). Первое из них определяет \(\lambda\) и \(\mu\) с точностью до общего множителя, но только с такой точностью они и нужны. Подставляя эти значения в \eqref, получаем уравнения прямолинейной образующей
$$
x+z=1+y,\ x-z=1-y.\nonumber
$$

Она проходит через \(M_<0>\), так как \(\lambda\) и \(\mu\) так и выбирались, чтобы координаты \(M_<0>\) удовлетворяли этой системе. Аналогично, подставляя координаты \(M_<0>\) в (10), находим условия на \(\lambda’\) и \(\mu’\): \(2\mu’=0\) и \(2\mu’=0\). Коэффициент \(\lambda’\) можно взять любым ненулевым, и мы приходим к уравнению второй образующей: \(x=z\), \(y=1\).

Если вместе с гиперболой мы будем вращать ее асимптоты, то они опишут прямой круговой конус, называемый асимптотическим конусом гиперболоида вращения. При сжатии гиперболоида вращения его асимптотический конус сжимается в асимптотический конус общего однополостного гиперболоида.

Двуполостный гиперболоид.

Двуполостный гиперболоид вращения — это поверхность, получаемая вращением гиперболы
$$
\frac>>-\frac>>=1\nonumber
$$
вокруг той оси, которая ее пересекает. По формуле \eqref мы получаем уравнение двуполостного гиперболоида вращения
$$
\frac>>-\frac+y^<2>>>=1.\label
$$
В результате сжатия этой поверхности к плоскости у=0 получается поверхность с уравнением
$$
\frac>>-\frac>>-\frac>>=1.\label
$$

Поверхность, которая в некоторой декартовой прямоугольной системе координат имеет уравнение вида \eqref, называется двуполостным гиперболоидом (рис. 10.6). Двум ветвям гиперболы здесь соответствуют две не связанные между собой части (“полости”) поверхности, в то время как при построении однополостного гиперболоида вращения каждая ветвь гиперболы описывала всю поверхность.

Асимптотический конус двуполостного гиперболоида определяется так же, как и для однополостного.

Рис. 10.6. Двуполостный гиперболоид вращения.

Эллиптический параболоид.

Вращая параболу \(x^<2>=2pz\) вокруг ее оси симметрии, мы получаем поверхность с уравнением
$$
x^<2>+y^<2>=2pz.\label
$$
Она называется параболоидом вращения. Сжатие к плоскости \(y=0\) переводит параболоид вращения в поверхность, уравнение которой приводится к виду
$$
\frac>>+\frac>>=2z.\label
$$

Поверхность, которая имеет такое уравнение в некоторой декартовой прямоугольной системе координат, называется эллиптическим параболоидом (рис. 10.7).

Рис. 10.7. Эллиптический параболоид.

Гиперболический параболоид.

По аналогии с уравнением \eqref мы можем написать уравнение
$$
\frac>>-\frac>>=2z.\label
$$

Поверхность, которая имеет уравнение вида \eqref в некоторой декартовой прямоугольной системе координат, называется гиперболическим параболоидом.

Исследуем форму этой поверхности. Для этого рассмотрим ее сечение плоскостью \(x=\alpha\) при произвольном \(\alpha\). В этой плоскости выберем декартову прямоугольную систему координат \(O’, \boldsymbol_<2>, \boldsymbol_<3>\) с началом в точке \(O'(\alpha, 0, 0)\). Относительно этой системы координат линия пересечения имеет уравнение
$$
-\frac>>=2\left(z-\frac<\alpha^<2>><2a^<2>>\right).\label
$$
Эта линия — парабола, в чем легко убедиться, перенеся начало координат в точку \(O″\) с координатами \((0, \alpha^<2>/(2a^<2>))\). (Координаты этой точки относительно исходной системы координат \(O, \boldsymbol_<1>, \boldsymbol_<2>, \boldsymbol_<3>\) в пространстве равны \((\alpha, 0, \alpha^<2>/(2a^<2>))\).)

Точка \(O″\), очевидно, является вершиной параболы, ось параболы параллельна вектору \(\boldsymbol_<3>\), а знак минус в левой части равенства \eqref означает, что ветви параболы направлены в сторону, противоположную направлению \(\boldsymbol_<3>\). Заметим, что после переноса начала координат в точку \(O″\) величина а не входит в уравнение параболы, и, следовательно, сечения гиперболического параболоида плоскостями \(x=\alpha\) при всех \(\alpha\) представляют собой равные параболы.

Будем теперь менять величину \(\alpha\) и проследим за перемещением вершины параболы \(O″\) в зависимости от \(\alpha\). Из приведенных выше координат точки \(O″\) следует, что эта точка перемещается по линии с уравнениями
$$
z=\frac><2a^<2>>,\ y=0\nonumber
$$
в системе координат \(O, \boldsymbol_<1>, \boldsymbol_<2>, \boldsymbol_<3>\). Эта линия — парабола в плоскости \(y=0\). Вершина параболы находится в начале координат, ось симметрии совпадает с осью аппликат, а ветви параболы направлены в ту же сторону, что и вектор \(\boldsymbol_<3>\).

Теперь мы можем построить гиперболический параболоид следующим образом: зададим две параболы и будем перемещать одну из них так, чтобы ее вершина скользила по другой, оси парабол были параллельны, параболы лежали во взаимно перпендикулярных плоскостях и ветви их были направлены в противоположные стороны.

При таком перемещении подвижная парабола описывает гиперболический параболоид (рис. 10.8).

Рис. 10.8. Гиперболический параболоид. \(OB\) — неподвижная парабола, \(KLM,\ NOP,\ QRS\) — положения подвижной параболы.

Сечения гиперболического параболоида плоскостями с уравнениями \(z=\alpha\) при всевозможных \(\alpha\) — гиперболы. Эти сечения нарисованы на рис. 10.9.

Рис. 10.9. Сечения гиперболического параболоида

Выводятся эти уравнения так же, как и уравнения прямолинейных образующих однополостного гиперболоида.

Двуполостный гиперболоид

Двуполостным гиперболоидом называется поверхность, заданная относительно специально выбранной системы координат уравнением x 2 /a 2 +y 2 /b 2 -z 2 /c 2 =-1 (1). Если точка (x, y, z) принадлежит двуполостному гиперболоиду (1), то на этой поверхности лежит точка с координатами (±x, ±y, ±z) при любом наборе знаков, следовательно начало координат является центром двуполостного гиперболоида, координатные оси — осями симметрии, координатные плоскости — плоскостями симметрии. Вершинами двуполостного гиперболоида называются точки пересечения поверхности с осью oz (0, 0, ±c).

Пусть в (1) a=b, тогда двуполостный гиперболоид получается вращением гиперболы x 2 /a 2 -z 2 /c 2 =-1 или z 2 /c 2 -x 2 /a 2 =1, у которой ось oz является её вещественной осью, а ox мнимой. Вращение гиперболы осуществляется вокруг оси oz. В этом случае двуполостный гиперболоид называется двуполостным гиперболоидом вращения.Двуполостный гиперболоид

6.6. Гиперболоиды

Их тоже два, и это тоже нечастые гости в массовой практике:

Однополостной гиперболоид

имеет каноническое уравнение , числа называют полуосями гиперболоида. Если его рассекать плоскостями , то будут получаться эллипсы: , которые неограниченно увеличиваются, когда мы уходим по оси вверх или вниз к бесконечности. Эллипс, лежащий в плоскости : называется горловым эллипсом, он самый маленький и хорошо просматривается на чертеже.

Если рассекать поверхность плоскостями, параллельными плоскостям , то в сечениях будут получаться гиперболы:

и эти гиперболы хорошо видны на поверхности. А посему и «гиперболоид».

Однополостной гиперболоид симметричен относительно всех координатных плоскостей, осей и начала координат.

Если , то мы имеем дело с гиперболоидом вращения: – он получен вращением гиперболы вокруг оси . Горизонтальные же сечения представляют собой окружности, в чём мы убедимся на конкретном примере:

Задача 182

Построить тело, ограниченное поверхностями

Решение: найдём пересечение гиперболоида с плоскостью : – горловая окружность радиуса 1. Найдём пересечение с плоскостью :
– окружность с центром в точке радиуса .

Изобразим на чертеже обе окружность и соединим их направляющими – 4 ветвями гиперболы.

Такой вот получился симпатичный горшок. …А вверху у меня чертёж, к слову, ассоциируется с унитазом 🙂

Двуполостной гиперболоид

имеет похожее каноническое уравнение . Поверхность представляет собой 2 бесконечные чаши с вершинами :

Для двуполостного гиперболоида справедливы почти все утверждения, что и для однополостного. Горизонтальные сечения плоскостями представляют собой эллипсы, а вертикальные – гиперболы. Но, естественно, тут нет горлового эллипса. Однако в плане симметрии всё так же.

Вообще, оба типа поверхностей можно назвать эллиптическими гиперболоидами, но это название не учитывает различие между ними. И поэтому их различают по количеству полостей – у предыдущего одна полость, а у этого – две.

И да, частный случай: – есть гиперболоид вращения.

Следующее задание для самостоятельного решения:

Задача 183

Построить тело, ограниченное поверхностями

С поверхностями всё! Теперь пару ласковых о координатах.

Как вы заметили, во всех случаях у нас фигурировала прямоугольная система координат, но в некоторых задачах бывают выгодны другие системы:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *