Определенный интеграл как предел интегральной суммы онлайн
Перейти к содержимому

Определенный интеграл как предел интегральной суммы онлайн

  • автор:

Калькулятор Интегралов

Вычисление интегралов онлайн
— по шагам и с графиками!

Посетите Калькулятор Производных!
Integral Calculator in English
Calculadora de Integrales en español
Integralrechner auf Deutsch

Калькулятор Интегралов позволяет вычислять интегралы и первообразные функций онлайн — совершенно бесплатно!

Наш Калькулятор позволяет проверить решение Ваших математических заданий. Он поможет вам с решением задачи показывая весь ход решения шаг за шагом. Поддерживаются все виды интегрирования включая специальные функции.

Калькулятор Интегралов поддерживает вычисление определённых и неопределённых (первообразных функций) интегралов включая интегрирование функций с несколькими переменными. Кроме этого Вы можете проверить результат своего решения! Интерактивные графики помогут представить и лучше понять функции интегралов.

Чтобы узнать больше о том как пользоваться Калькулятором Интегралов, загляните в раздел «Справка» или ознакомьтесь с примерами.

Ну что ж, теперь — вперед! Успешного интегрирования!

Введите функцию, которую вы хотите проинтегрировать в Калькулятор Интегралов. Не вводите «f(x) =» часть и дифференциал «dx«! Калькулятор Интегралов сразу показывает математическое выражение в графическом виде, прямо в процессе ввода. Убедитесь, что это выражение соответствует тому, что Вы хотели ввести. Используйте скобки если понадобится, например «a/(b+c)«.

В разделе «Примеры», приведены некоторые из функций которые Калькулятор Интегралов способен вычислять.

После того как Вы закончили вводить вашу функцию, нажмите «=» и Калькулятор Интегралов выдаст результат.

В разделе «Настройки» переменная интегрирования и пределы интегрирования могут быть установлены/изменены. Если пределы интегрирования не будут указаны, то будет вычислена только лишь первообразная функция.

Щелчок мышки на примере вводит его в Калькулятор Интегралов. Простое наведение мышки — показывает текст выражения.

Настройте параметры калькулятора:

Переменная интегрирования:
Верхний предел (до): +∞
Нижний предел (от): –∞
Использовать только численное интегрирование?
Упрощать выражения интенсивнее?
Упрощать все корни?
(√ x² станет x, а не |x|)
Использовать комплексные числа (ℂ)?
Использовать числа с запятой вместо дробей?

Генератор заданий для тренировки позволяет сгенерировать сколько угодно различных случайных заданий.

Ниже Вы найдете настройки конфигурации и один из предложенных вариантов задания. Вы можете взяться за его решение (тогда оно будет введено в Калькулятор) или сгенерировать новое.

Вычисляем интеграл: Введите Ваш результат:

Следующее выражение будет вычислено:

Загрузка … пожалуйста подождите!
Это займет несколько секунд.

Это не то, что Вы имели ввиду? Используйте скобки! В случае необходимости, выберите переменную и пределы интегрирования в разделе «Настройки«.

Поддержка

Вам помог мой калькулятор? Расскажите своим друзьям об этом Калькуляторе и Вы тоже сможете мне помочь!

Результаты вычислений

Как работает Калькулятор Интегралов

Для тех кому интересны технические подробности, в этой части рассказывается как устроен и работает Калькулятор Интегралов.

Сначала синтаксический анализатор (па́рсер) анализирует исходное математическое выражение. Он преобразует его в форму более удобную для компьютера, а именно в форму дерева (см. картинку ниже). В процессе такого преобразования, Интегральный Калькулятор должен соблюдать порядок операций с учетом их приоритета. Так же, как и то, что в математических выражениях знак умножения часто опускается, например, мы обычно пишем «5x» вместо «5*x». Калькулятор Интегралов должен уметь понимать такие случаи и сам добавлять знак умножения.

Па́рсер написан на JavaScript, и основывается на алгоритме сортировочной станции, поэтому может исполняться прямо в браузере. Это дает возможность генерировать удобочитаемое выражение на ходу, преобразуя получающееся дерево в код для LaTeX (Ла́тех). С помощью MathJax происходит генерация картинки и ее отображение в браузере.

По нажатию кнопки » Проверка решения» должен решить сложную задачу по определению являются ли два математических выражения равными друг другу. Разница между выражениями вычисляется и упрощается с помощью Ма́ксимы настолько, насколько это возможно. К примеру, это может быть переписывание тригонометрических/гиперболических функций в их экспоненциальные формы. Если удается упростить разницу до нуля — задача выполнена. В противном случае, применяется вероятностный алгоритм, который вычисляет и сравнивает оба выражения в случайно выбранных местах. В случае с первообразной, вся процедура повторяется для каждой производной, т.к. первообразная может отличаться константой.

Интерактивные графики функций вычисляются в браузере и отрисовываются на Сanvas («Холст») из HTML5. Для каждой математической функции, которая должна быть отрисована, Калькулятор создает функцию JavaScript, которая затем вычисляется с шагом, необходимым для правильного отображения графика. Все сингулярности (например полюса) функции обнаруживаются в процессе отрисовки и обрабатываются отдельно. Управление жестами для мобильных устройств сделано на основе hammer.js.

Если у Вас есть вопросы или пожелания, а так же идеи как улучшить Калькулятор Интегралов, пожалуйста пишите мне на e-mail.

Определенный интеграл

Пусть функцияопределена на отрезке [ b, a] . Разобьем его произвольно на n частей
точками так что />. В каждом частичном отрезке произвольным образом выбрана точка

Определение: Сумма вида:

где называется интегральной суммой функции f (x) на отрезке [a,b].

Определение: Определенным интегралом от функции f (x) на отрезке [a,b] называется
предел интегральных сумм Sn при условии, что длина наибольшего частичного отрезка Δxi
стремится к нулю:

где λ= max — шаг разбиения.

Если предел существует и не зависит от способа разбиения отрезка [a,b] и от выбора
точек ξ , то непрерывная функция f (x) называется интегрируемой на отрезке [a,b] .

Теорема (о существовании определенного интеграла). Если функция f (x) непрерывна на
отрезке [a,b] , то она интегрируема на этом отрезке, т.е. для нее существует предел
интегральных сумм, который не зависит ни от способа разбиения отрезка [a,b] на части,
ни от выбора точек ξ.

Свойства определенного интеграла

если f(x) ≥ 0 на отрезке ] , [ b a , то

если f (x) ≤ 0 для всех точек x∈[a,b] , то

если f (x) ≤ g(x) на отрезке [a,b] , то

если М – наибольшее, m – наименьшее значение f (x) на [a,b] , то

Определенный интеграл онлайн

Определенным интегралом от заданной функции называется предел интегральных сумм, т.е.:

Определенный интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми , и графиком функции .

Для того чтобы вычислить определенный интеграл, сначала нужно вычислить неопределенный интеграл , а затем воспользоваться формулой Ньютона-Лейбница:

Эта формула применима при условии, что подинтегральная функция является непрерывной на отрезке интегрирования. Поэтому, прежде чем приступить к вычислению определенного интеграла, необходимо найти область определения подинтегральной функции. Если выяснится, что подинтегральная функция имеет точки разрыва на отрезке интегрирования, необходимо разбить отрезок на несколько частей в каждой из которых подинтегральная функция непрерывна. Далее, следует вычислить соответствующие неопределенные интегралы на каждом из отрезков, и воспользоваться формулой Ньютона-Лейбница, взяв пределы в точках, где функция терпит разрыв.

Численное интегрирование

Вычисляет определенный интеграл методом прямоугольников, трапеций или парабол (методом Симпсона).

Численные методы вычисления значения определенного интеграла применяются в том случае, когда первообразная подинтегральной функции не выражается через аналитические функции, и поэтому невозможно вычислить значение по формуле Ньютона-Лейбница. Для получения значения определенного интеграла таких функций можно воспользоваться численным интегрированием.

Численное интегрирование сводится к вычислению площади криволинейной трапеции, ограниченной графиком заданной функции, осью х и вертикальными прямыми ограничивающими отрезок слева и справа. Подинтегральная функция заменяется на более простую, обеспечивающую заданную точность, вычисление интеграла для которой не составляет труда.

Калькулятор ниже вычисляет значение одномерного определенного интеграла численно на заданном отрезке, используя формулы Ньютона-Котеса, частными случаями которых являются:

  1. Метод прямоугольников
  2. Метод трапеций
  3. Метод парабол (Симпсона)
Интеграл численным методом по формулам Ньютона-Котеса

Численное интегрирование с использованием функций Ньютона Котеса

При использовании функций Ньютона-Котеса отрезок интегрирования разбивается на несколько равных отрезков точками x1,x2,x3..xn.
Подинтегральную функцию заменяют интерполяционным многочленом Лагранжа различной степени, интегрируя который, получают формулу численного интегрирования различного порядка точности.

В итоге, приближенное значение определенного интеграла вычисляется, как сумма значений подинтегральной функции в узлах, помноженных на некоторые константы Wi (веса):

  • Rn — остаток или погрешность.
  • n — общее количество точек.
  • Сумма в формуле — квадратурное правило (метод).

В справочнике Квадратурные функции Ньютона-Котеса, мы собрали наиболее часто встречающиеся квадратурные правила, для интегрирования по равным отрезкам. Зарегистрированные пользователи могут добавлять в этот справочник новые правила.

Границы отрезка интегрирования

В зависимости от того, входят ли граничные точки отрезка в расчет, выделяют замкнутые и открытые квадратурные правила.

Открытые правила, (правила, в которых граничные точки не включаются в расчет) удобно использовать в том случае, если подинтегральная функция не определена в некоторых точках.
Например, используя метод прямоугольников мы сможем вычислим приблизительное значение интеграла функции ln(x) на отрезке (0,1), несмотря на то, что ln(0) не существует.

Замкнутые правила, напротив, используют значения функции в граничных точках для вычислений интеграла, ровно так же как и в остальных узлах.

Можно придумать правила, которые открыты только с одной стороны. Простейшим случаем таких правил являются правила левых и правых прямоугольников.

Погрешность вычисления

В целом с увеличением количества узлов в правиле (при повышении степени интерполирующего полинома) возрастает точность вычисления интеграла. Однако для некоторых функций это может и не быть справедливо.
Впервые анализ этой особенности опубликовал Карл Рунге, немецкий математик, занимавшийся исследованием численных методов.
Он заметил, интерполирующий полином с равномерным разбиением отрезка для функции перестает сходиться в диапазоне значений 0.726.. ≤ |x| <1 при увеличении степени полинома.
В выражении для вычисления погрешности участвует интервал h, факториал от количества разбиений, которые при увеличении степени полинома уменьшают значение погрешности, но для некоторых функций значения производной, также участвующие в выражении погрешности, растут быстрее с увеличением ее порядка.

Кроме этого, при увеличении степени интерполирующего полинома Лагранжа, возникают веса, имеющие отрицательные значения. Данный факт негативно сказывается на вычислительной погрешности. Калькулятор выдает графическое представление промежуточных результатов вычисления квадратурной функции. Для положительных коэффициентов Wi это выглядит ровно так же, как принято отображать сумму Римана. При наличии отрицательных значений коэффициентов Wi на графике появляются значения интегральной суммы с противоположным знаком, суммарная ширина положительных и отрицательных интегральных сумм становится больше, чем длина интегрируемого отрезка. Этот эффект можно наблюдать в следующем примере: Замкнутое правила Ньютона-Котеса с 11-ю узлами

Принимая во внимание эти особенности, правила с полиномами степеней >10 применять не рекомендуется.

Для увеличения точности численного интегрирования, можно разбить отрезок на несколько частей — частичных интервалов, и для каждой части отдельно вычислить приближенное значение интеграла. Сумма значений интеграла по всем частичным интервалам даст нам значение интеграла на всем отрезке. Кроме того можно комбинировать различные правила друг с другом в любой последовательности.

Для исследования работы с заданной функцией новых, основанных на формулах Ньютона-Котеса правил, можно воспользоваться базовым калькулятором, в котором веса задаются в явном виде:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *