Расстояние между двумя скрещивающимися прямыми
В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения расстояния между скрещивающимися прямыми с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).
Для нахождения расстояния между скрещивающимися прямыми необходимо:
- Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
- Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.
Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.
Расстояние между прямыми в пространстве
Рис. 1. Чертеж к задаче
Решение. Через середину диагонали куба DB1 (точку O) проведем прямую, параллельную прямой A1B. Точки пересечения данной прямой с ребрами BC и A1D1 обозначаем соответственно N и M. Прямая MN лежит в плоскости MNB1 и параллельна прямой A1B, которая в этой плоскости не лежит. Это означает, что прямая A1B параллельна плоскости MNB1 по признаку параллельности прямой и плоскости (рис. 2).
Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости
Ищем теперь расстояние от какой-нибудь точки прямой A1B до плоскости MNB1. Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.
Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA, ось Y — вдоль ребра BC, ось Z — вдоль ребра BB1 (рис. 3).
Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке
Находим уравнение плоскости MNB1 в данной системе координат. Для этого определяем сперва координаты точек M, N и B1:
Полученные координаты подставляем в общее уравнение прямой
и получаем следующую систему уравнений:
Из второго уравнения системы получаем из третьего получаем
после чего из первого получаем
Подставляем полученные значения в общее уравнение прямой:
Замечаем, что иначе плоскость MNB1 проходила бы через начало координат. Делим обе части этого уравнения на
и получаем:
Расстояние от точки до плоскости определяется по формуле:
где — координаты точки B.
— коэффициенты при переменных
в уравнении плоскости. Точка B имеет координаты
Получаем окончательно:
Ответ:
Нахождение расстояния между скрещивающимися прямыми
\(\blacktriangleright\) Скрещивающиеся прямые – это прямые, через которые нельзя провести одну плоскость.
Признак скрещивающихся прямых: если первая прямая пересекает плоскость, в которой лежит вторая прямая, в точке, не лежащей на второй прямой, то такие прямые скрещиваются.
\(\blacktriangleright\) Т.к. через одну из скрещивающихся прямых проходит ровно одна плоскость, параллельная другой прямой, то расстояние между скрещивающимися прямыми — это расстояние между одной из этих прямых и плоскостью, проходящей через вторую прямую параллельно первой.
Таким образом, если прямые \(a\) и \(b\) скрещиваются, то:
Шаг 1. Провести прямую \(c\parallel b\) так, чтобы прямая \(c\) пересекалась с прямой \(a\) . Плоскость \(\alpha\) , проходящая через прямые \(a\) и \(c\) , и будет плоскостью, параллельной прямой \(b\) .
Шаг 2. Из точки пересечения прямых \(a\) и \(c\) ( \(a\cap c=H\) ) опустить перпендикуляр \(HB\) на прямую \(b\) (первый способ).
Или из любой точки \(B'\) прямой \(b\) опустить перпендикуляр на прямую \(c\) (второй способ).
В зависимости от условия задачи какой-то из этих двух способов может быть гораздо удобнее другого.
В кубе \(ABCDA_1B_1C_1D_1\) , ребро которого равно \(\sqrt<32>\) , найдите расстояние между прямыми \(DB_1\) и \(CC_1\) .
Прямые \(DB_1\) и \(CC_1\) скрещиваются по признаку, т.к. прямая \(DB_1\) пересекает плоскость \((DD_1C_1)\) , в которой лежит \(CC_1\) , в точке \(D\) , не лежащей на \(CC_1\) .
Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой \(CC_1\) и плоскостью, проходящей через \(DB_1\) параллельно \(CC_1\) . Т.к. \(DD_1\parallel CC_1\) , то плоскость \((B_1D_1D)\) параллельна \(CC_1\) .
Докажем, что \(CO\) – перпендикуляр на эту плоскость. Действительно, \(CO\perp BD\) (как диагонали квадрата) и \(CO\perp DD_1\) (т.к. ребро \(DD_1\) перпендикулярно всей плоскости \((ABC)\) ). Таким образом, \(CO\) перпендикулярен двум пересекающимся прямым из плоскости, следовательно, \(CO\perp (B_1D_1D)\) .
\(AC\) , как диагональ квадрата, равна \(AB\sqrt2\) , то есть \(AC=\sqrt<32>\cdot \sqrt2=8\) . Тогда \(CO=\frac12\cdot AC=4\) .
Дан куб \(ABCDA_1B_1C_1D_1\) . Найдите расстояние между прямыми \(AB_1\) и \(BC_1\) , если ребро куба равно \(a\) .
1) Заметим, что эти прямые скрещиваются по признаку, т.к. прямая \(AB_1\) пересекает плоскость \((BB_1C_1)\) , в которой лежит \(BC_1\) , в точке \(B_1\) , не лежащей на \(BC_1\) .
Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой \(BC_1\) и плоскостью, проходящей через \(AB_1\) параллельно \(BC_1\) .
Для этого проведем \(AD_1\) — она параллельна \(BC_1\) . Следовательно, по признаку плоскость \((AB_1D_1)\parallel BC_1\) .
2) Опустим перпендикуляр \(C_1H\) на эту плоскость и докажем, что точка \(H\) упадет на продолжение отрезка \(AO\) , где \(O\) – точка пересечения диагоналей квадрата \(A_1B_1C_1D_1\) .
Действительно, т.к. по свойству квадрата \(C_1O\perp B_1D_1\) , то по теореме о трех перпендикуляр проекция \(HO\perp B_1D_1\) . Но \(\triangle AB_1D_1\) равнобедренный, следовательно, \(AO\) – медиана и высота. Значит, точка \(H\) должна лежать на прямой \(AO\) .
3) Рассмотрим плоскость \((AA_1C_1)\) .
\(\triangle AA_1O\sim \triangle OHC_1\) по двум углам ( \(\angle AA_1O=\angle OHC_1=90^\circ\) , \(\angle AOA_1=\angle HOC_1\) ). Таким образом,
По теореме Пифагора из \(\triangle AA_1O\) : \[AO=\sqrt2>=\dfrac<\sqrt6>2a.\]
Следовательно, из \((*)\) теперь можно найти перпендикуляр
Дан куб \(ABCDA_1B_1C_1D_1\) . Найдите расстояние между прямыми \(A_1B\) и \(AC_1\) , если ребро куба равно \(\sqrt6\) .
По определению угол между скрещивающимися прямыми — это угол между одной прямой и плоскостью, проходящей через вторую прямую параллельно первой. Найдем плоскость, проходящую через \(A_1B\) параллельно \(AC_1\) .
Заметим, что данные прямые являются скрещивающимися. Т.к. \(B_1C_1\perp (AA_1B_1)\) , то проекция наклонной \(AC_1\) на эту плоскость – это прямая \(AB_1\) .
Пусть \(AB_1\cap A_1B=O\) . Опустим из точки \(O\) на \(AC_1\) перпендикуляр \(OK\) и докажем, что это и есть искомое расстояние. Т.к. по определению расстояние между скрещивающимися прямыми – длина отрезка, перпендикулярного обеим прямым, то осталось доказать, что \(OK\) перпендикулярен прямой \(A_1B\) .
Действительно, проведем \(KH\parallel B_1C_1\) (следовательно, \(H\in AB_1\) ). Тогда т.к. \(B_1C_1\perp (AA_1B_1)\) , то и \(KH\perp (AA_1B_1)\) . Тогда по теореме о трех перпендикулярах (т.к. проекция \(HO\perp A_1B\) ) наклонная \(KO\perp A_1B\) , чтд.
Таким образом, \(KO\) – искомое расстояние.
Заметим, что \(\triangle AOK\sim \triangle AC_1B_1\) (по двум углам). Следовательно,
Нахождение кратчайшего расстояния между прямыми в пространстве
Расстояние между прямыми в пространстве — это отрезок, который соединяет две прямые линии по самому короткому пути. Иными словами, он перпендикулярен обеим этим прямым.
Но не всегда две линии могут быть параллельны друг другу.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через вторую прямую параллельно первой.
Таким образом, чтобы найти расстояние между этими скрещивающимися прямыми, нужно от одной из прямых провести перпендикуляр на плоскость, в которой лежит другая прямая.
Между параллельными прямыми расстояние одинаково на протяжении всей их длины: перпендикуляр, опущенный из любой точки одной из этих линий, всегда будет одной и той же величины.
Метод координат для определения расстояния
Разберем пошагово способ определения расстояния между двумя скрещивающимися прямыми с помощью метода координат.
- Определить координаты точек \(М_1\) и \(М_2\) , лежащих соответственно на прямых a и b.
- Найти x, y и z направляющих векторов для прямых a и b.
- Найти вектор-нормаль для плоскости, в которой лежит прямая b с помощью векторного произведения \(\overrightarrow a\) и \(\overrightarrow b\) .
- Записать общее уравнение плоскости: \(A(x-x_0)+B(y-y_0)+C(z-z_0)=0\) и потом записать к нормированному виду уравнения плоскости, которое выглядит так: \(x\times\cos\left(\alpha\right)+y\times\cos\left(\beta\right)+z\times\cos\left(\gamma\right)-p=0\) , где p — свободный член (число, которое равно расстоянию точки начала координат до плоскости), а \(\cos\left(\alpha\right),\;\cos\left(\beta\right)\) и \(\cos\left(\gamma\right)\) — координаты единичного нормального вектора плоскости.
- Далее, для определения расстояния от точки M до искомой плоскости, воспользуемся следующим уравнением: \(M_1H_1=\left|x_1\times\cos\left(\alpha\right)+y_1\times\cos\left(\beta\right)+z_1\cos\left(\gamma\right)-p\right|\) , где \(x_1\) ,\(y_1\) и \(z_1\) — координаты точки \(M_1\) , лежащей на прямой a, а \(H_1\) — точка, лежащая на искомой плоскости.
Примеры задач с решением
Задача 1
Дан куб \(ABCDA_1B_1C_1D_1\) с ребром равным \(\sqrt<32>\) см. Найти расстояние между прямыми \(DB_1\) и \(CC_1\) .
Решение
Расстояние между скрещивающимися прямыми будем искать в качестве расстояния между прямой \(CC_1\) и плоскостью, проходящей через \(DB_1\) параллельно \(CC_1\) . Так как \(DD_1\parallel CC_1\) , плоскость \((B_1D_1D)\) параллельна \(СС_1\) .
Сначала нужно доказать, что \(CO\) — перпендикуляр, проведенный к этой плоскости. \(CO\perp BD\) (как диагонали квадрата) и \(CO\perp DD_1\) (так как ребро \(DD_1\) перпендикулярно всей плоскости \((ABC)\) ). Получается, \(CO\) перпендикулярен двум пересекающимся прямым из плоскости. Значит, \(CO\perp(B_1D_1D)\) .
\(AC\) — диагонально квадрата — равна \(AB\sqrt2\) , то есть \(AC=\sqrt<32>\times\sqrt2=\sqrt<64>=8\) см. Следовательно, \(CO=\frac12\times AC=4\) см.
Задача 2
В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b. Прямую a определяют параметрические уравнения прямой в пространстве:
А прямую b канонические уравнения прямой в пространстве:
Вычислить расстояние между заданными прямыми.
Решение
Прямая a проходит через точку \(M_1(-2, 1, 4)\) и имеет направляющий вектор \(\overrightarrow a=(0, 2, -3)\) . Прямая b проходит через точку \(M_2 (0, 1, -4)\) , а ее направляющий вектором является вектор \(\overrightarrow b=(1, -2, 6)\) .
Найдем векторное произведение векторов \( \overrightarrow a=(0, 2, -3)\) и \(\overrightarrow b=(1, -2, 6): \left[\overrightarrow a\times\overrightarrow b\right]=\begin
Так, \(\overrightarrow n=\left[\overrightarrow a\times\overrightarrow b\right]\) плоскости X, проходящей через прямую b параллельно прямой a, имеет координаты (6, -3, -2).
Таким образом, уравнение плоскости X есть уравнение плоскости, проходящей через точку \(M_2(0, 1, -4)\) и имеющей нормальный вектор \(\overrightarrow n=(6, -3, -2)\) :
Нормирующий множитель для общего уравнения плоскости \(6x-3y-2z-5=0\) равен \ \(frac1<\sqrt<6^2+<(-3)>^2+<(-2)>^2>>=\frac17\) . Значит, нормальное уравнение этой плоскости выглядит как \(\frac67x-\frac37y-\frac27z-\frac57=0\) .
Воспользуемся формулой для вычисления расстояния от точки \(M_1(-2, 1, 4)\) до плоскости \(\frac67x-\frac37y-\frac27z-\frac57=0: \left|M\_1H\_1\right|=\left|\frac67\times(-2)-\frac37\times1-\frac27\times4-\frac57\right|=\left|\frac<-28>7\right|=4\) см.
Как найти расстояние d1b b1c
Нахождение кратчайшего расстояния между прямыми в пространстве
Расстояние между прямыми в пространстве — это отрезок, который соединяет две прямые линии по самому короткому пути. Иными словами, он перпендикулярен обеим этим прямым.
Но не всегда две линии могут быть параллельны друг другу.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Расстояние между двумя скрещивающимися прямыми в пространстве — это расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через вторую прямую параллельно первой.
Таким образом, чтобы найти расстояние между этими скрещивающимися прямыми, нужно от одной из прямых провести перпендикуляр на плоскость, в которой лежит другая прямая.
Между параллельными прямыми расстояние одинаково на протяжении всей их длины: перпендикуляр, опущенный из любой точки одной из этих линий, всегда будет одной и той же величины.
Метод координат для определения расстояния
Разберем пошагово способ определения расстояния между двумя скрещивающимися прямыми с помощью метода координат.
- Определить координаты точек \(М_1\) и \(М_2\) , лежащих соответственно на прямых a и b.
- Найти x, y и z направляющих векторов для прямых a и b.
- Найти вектор-нормаль для плоскости, в которой лежит прямая b с помощью векторного произведения \(\overrightarrow a\) и \(\overrightarrow b\) .
- Записать общее уравнение плоскости: \(A(x-x_0)+B(y-y_0)+C(z-z_0)=0\) и потом записать к нормированному виду уравнения плоскости, которое выглядит так: \(x\times\cos\left(\alpha\right)+y\times\cos\left(\beta\right)+z\times\cos\left(\gamma\right)-p=0\) , где p — свободный член (число, которое равно расстоянию точки начала координат до плоскости), а \(\cos\left(\alpha\right),\;\cos\left(\beta\right)\) и \(\cos\left(\gamma\right)\) — координаты единичного нормального вектора плоскости.
- Далее, для определения расстояния от точки M до искомой плоскости, воспользуемся следующим уравнением: \(M_1H_1=\left|x_1\times\cos\left(\alpha\right)+y_1\times\cos\left(\beta\right)+z_1\cos\left(\gamma\right)-p\right|\) , где \(x_1\) ,\(y_1\) и \(z_1\) — координаты точки \(M_1\) , лежащей на прямой a, а \(H_1\) — точка, лежащая на искомой плоскости.
Примеры задач с решением
Задача 1
Дан куб \(ABCDA_1B_1C_1D_1\) с ребром равным \(\sqrt \) см. Найти расстояние между прямыми \(DB_1\) и \(CC_1\) .
Решение
Расстояние между скрещивающимися прямыми будем искать в качестве расстояния между прямой \(CC_1\) и плоскостью, проходящей через \(DB_1\) параллельно \(CC_1\) . Так как \(DD_1\parallel CC_1\) , плоскость \((B_1D_1D)\) параллельна \(СС_1\) .
Сначала нужно доказать, что \(CO\) — перпендикуляр, проведенный к этой плоскости. \(CO\perp BD\) (как диагонали квадрата) и \(CO\perp DD_1\) (так как ребро \(DD_1\) перпендикулярно всей плоскости \((ABC)\) ). Получается, \(CO\) перпендикулярен двум пересекающимся прямым из плоскости. Значит, \(CO\perp(B_1D_1D)\) .
\(AC\) — диагонально квадрата — равна \(AB\sqrt2\) , то есть \(AC=\sqrt \times\sqrt2=\sqrt =8\) см. Следовательно, \(CO=\frac12\times AC=4\) см.
Задача 2
В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b. Прямую a определяют параметрические уравнения прямой в пространстве:
А прямую b канонические уравнения прямой в пространстве:
Вычислить расстояние между заданными прямыми.
Решение
Прямая a проходит через точку \(M_1(-2, 1, 4)\) и имеет направляющий вектор \(\overrightarrow a=(0, 2, -3)\) . Прямая b проходит через точку \(M_2 (0, 1, -4)\) , а ее направляющий вектором является вектор \(\overrightarrow b=(1, -2, 6)\) .
Найдем векторное произведение векторов \( \overrightarrow a=(0, 2, -3)\) и \(\overrightarrow b=(1, -2, 6): \left[\overrightarrow a\times\overrightarrow b\right]=\begin \overrightarrow i&\overrightarrow j&\overrightarrow k\\0&2&-3\\1&-2&6\end =6\times\overrightarrow i-3\times\overrightarrow j-2\times\overrightarrow k\) .
Так, \(\overrightarrow n=\left[\overrightarrow a\times\overrightarrow b\right]\) плоскости X, проходящей через прямую b параллельно прямой a, имеет координаты (6, -3, -2).
Таким образом, уравнение плоскости X есть уравнение плоскости, проходящей через точку \(M_2(0, 1, -4)\) и имеющей нормальный вектор \(\overrightarrow n=(6, -3, -2)\) :
Нормирующий множитель для общего уравнения плоскости \(6x-3y-2z-5=0\) равен \ \(frac1 ^2+ ^2>>=\frac17\) . Значит, нормальное уравнение этой плоскости выглядит как \(\frac67x-\frac37y-\frac27z-\frac57=0\) .
Воспользуемся формулой для вычисления расстояния от точки \(M_1(-2, 1, 4)\) до плоскости \(\frac67x-\frac37y-\frac27z-\frac57=0: \left|M\_1H\_1\right|=\left|\frac67\times(-2)-\frac37\times1-\frac27\times4-\frac57\right|=\left|\frac 7\right|=4\) см.
Расстояние между двумя точками онлайн
С помощю этого онлайн калькулятора можно найти расстояние между точками по известным координатам этих точек. Дается решение с пояснениями. Для нахождения расстояния между точками задайте размерность (2-если задача рассматривается в двухмерном пространстве, 3- если задача рассматривается в трехмерном пространстве), введите координаты точек в ячейки и нажмите на кнопку «Решить». Теоретическую часть смотрите ниже.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Расстояние между двумя точками на прямой
Пусть заданы на оси OX точки A с координатой xa и B с координатой xb (Рис.1). Найдем расстояние между точками A и B.
![]() |
Расстояние между точками A и В равно:
\( \small AB=OB-OA. \) | (1) |
Поскольку расстояние от O до В равна xb, а расстояние от O до A равна xa, получим:
\( \small AB=x_b-x_a . \) | (2) |
![]() |
На рисунке 2 точки A и В находятся по разные стороны начала координат O. B этом случае рассояние между точками A и B равно:
\( \small AB=OB+OA. \) | (3) |
Поскольку координата точки A отрицательна а координата точки B положительна, то (2) можно записать так:
\( \small AB=x_b+|x_a|=x_b-x_a . \) | (4) |
На рисунке 3 точки A и В находятся c левой стороны начала координат O.
![]() |
B этом случае рассояние между точками A и B равно:
\( \small AB=OA-OB. \) | (5) |
Координаты точек A и B отрицательны. Тогда , то (5) можно записать так:
\( \small AB=|x_a|-|x_b|=x_b-x_a . \) | (6) |
Из формул (2),(4),(6) следует, что независимо от расположения точек отностительно начала координат рассояние этих точек равна разности координат этих точек, причем от большего значения вычитается меньшее (так как расстояние не может быть отрицательным числом).
Формулы (2),(4),(6) можно записать и так:
\( \small AB=|x_b-x_a|= |x_a-x_b| . \) | (7) |
Пример 1. на оси Ox заданы точки \( \small A(x_a)=A(-4) \) и \( \small B(x_b)=B(7) \) . Найти рассояние между этими точками.
Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (7):
\( \small AB=|x_b-x_a|= |7-(-4)|=11 . \) | (7) |
Расстояние между двумя точками на плоскости
Пусть на плоскости задана декартова прямоугольная система координат XOY и пусть на плоскости заданы точки A и B, где A имеет координаты (xa,ya), а B имеет координаты (xb,yb) (Рис.4).
![]() |
Учитывая результаты предыдующего параграфа, можем найти расстояние между точками A и M, а также расстояние между точками B и M:
\( \small AM=x_b-x_a,\;\; BM=y_b-y_a. \) | (8) |
ABM является прямоугольным треугольником, где AB гипотенуза, а AM и BM катеты. Тогда, исходя из теоремы Пифагора, имеем:
\( \small AB^2=AM^2+BM^2. \) |
Тогда, учитывая (8), получим:
\( \small AB^2=AM^2+BM^2=(x_b-x_a)^2+(y_b-y_a)^2. \) |
\( \small AB=\sqrt . \) | (9) |
Пример 2. На плоскости, в декартовой прямоугольной системе координат XOY заданы точки \( \small A(x_a; \ y_a)=A(-6;3) \) и \( \small B(x_b, \ y_b)=B(11,-4). \) . Найти рассояние между этими точками.
Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (9). Подставляя координаты точек A и B в формулу (9), получим:
![]() ![]() ![]() |
![]() |
Ответ: .
Расстояние между двумя точками в пространстве
Рассмотрим в пространстве, в декартовой прямоугольной системе координат точки A и B, где A имеет координаты (xa,ya,za), а B имеет координаты (xb,yb,zb) (Рис.5).
![]() |
AB является диагональю параллелепипеда, грани которго параллельны координатным плоскостьям и проходят через точки A и B. Но AB является гипотенузой прямоугольного треугольника AMB, а AM и BM являются катетами этого прямоугольного треугольника. Тогда, по теореме Пифагора, имеем:
\( \small AB^2=AM^2+BM^2. \) | (10) |
Учитывая, что BM равно разности третьих координат точек B и A, получим:
\( \small BM=z_b-z_a. \) |
Из предыдующего параграфа следует, что:
\( \small A’B’^2=(x_b-x_a)^2+(y_b-y_a)^2. \) | (11) |
Но AM=A’B’. Тогда из (10) и (11) следует:
\( \small AB^2=AM^2+BM^2=A’B’^2+BM^2 \) \( \small =(x_b-x_a)^2+(y_b-y_a)^2+(z_b-z_a)^2. \) |
\( \small AB= \sqrt . \) | (12) |
Пример 3. В пространстве задана декартова прямоугольная система координат XOY и точки \( \small A(x_a; \ y_a ;\ z_a)=A(5;1;0) \) и \( \small B(x_b, \ y_b, \ z_b)=B(-8,-4;21). \) Найти рассояние между этими точками.
Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (12). Подставляя координаты точек A и B в формулу (12), получим:
![]() ![]() ![]() |
![]() |
Ответ: .
Расстояние от точки до точки: формулы, примеры, решения
В данной статье рассмотрим способы определить расстояние от точки до точки теоретически и на примере конкретных задач. И для начала введем некоторые определения.
Расстояние между точками – это длина отрезка, их соединяющего, в имеющемся масштабе. Задать масштаб необходимо, чтобы иметь для измерения единицу длины. Потому в основном задача нахождения расстояния между точками решается при использовании их координат на координатной прямой, в координатной плоскости или трехмерном пространстве.
Расстояние между точками на координатной прямой
Исходные данные: координатная прямая O x и лежащая на ней произвольная точка А . Любой точке прямой присуще одно действительное число: пусть для точки А это будет некое число х A , оно же – координата точки А .
В целом можно говорить о том, что оценка длины некого отрезка происходит в сравнении с отрезком, принятым за единицу длины в заданном масштабе.
Если точке А соответствует целое действительное число, отложив последовательно от точки О до точки по прямой О А отрезки – единицы длины, мы можем определить длину отрезка O A по итоговому количеству отложенных единичных отрезков.
К примеру, точке А соответствует число 3 – чтобы попасть в нее из точки О , необходимо будет отложить три единичных отрезка. Если точка А имеет координату — 4 – единичные отрезки откладываются аналогичным образом, но в другом, отрицательном направлении. Таким образом в первом случае, расстояние О А равно 3 ; во втором случае О А = 4 .
Если точка A имеет в качестве координаты рациональное число, то от начала отсчета (точка О ) мы откладываем целое число единичных отрезков, а затем его необходимую часть. Но геометрически не всегда возможно произвести измерение. К примеру, затруднительным представляется отложить на координатной прямой дробь 4 111 .
Вышеуказанным способом отложить на прямой иррациональное число и вовсе невозможно. К примеру, когда координата точки А равна 11 . В таком случае возможно обратиться к абстракции: если заданная координата точки А больше нуля, то O A = x A (число принимается за расстояние); если координата меньше нуля, то O A = — x A . В общем, эти утверждения справедливы для любого действительного числа x A .
Резюмируя: расстояние от начала отсчета до точки, которой соответствует действительное число на координатной прямой, равно:
- 0, если точка совпадает с началом координат;
- x A , если x A > 0 ;
- — x A , если x A < 0 .
При этом очевидно, что сама длина отрезка не может быть отрицательной, поэтому, используя знак модуля, запишем расстояние от точки O до точки A с координатой x A : O A = x A
Верным будет утверждение: расстояние от одной точки до другой будет равно модулю разности координат. Т.е. для точек A и B , лежащих на одной координатной прямой при любом их расположении и имеющих соответственно координаты x A и x B : A B = x B — x A .
Расстояние между точками на плоскости
Исходные данные: точки A и B , лежащие на плоскости в прямоугольной системе координат O x y с заданными координатами: A ( x A , y A ) и B ( x B , y B ) .
Проведем через точки А и B перпендикуляры к осям координат O x и O y и получим в результате точки проекции: A x , A y , B x , B y . Исходя из расположения точек А и B далее возможны следующие варианты:
— если точки А и В совпадают, то расстояние между ними равно нулю;
— если точки А и В лежат на прямой, перпендикулярной оси O x (оси абсцисс), то точки и совпадают, а | А В | = | А y B y | . Поскольку, расстояние между точками равно модулю разности их координат, то A y B y = y B — y A , а, следовательно A B = A y B y = y B — y A .
— если точки A и B лежат на прямой, перпендикулярной оси O y (оси ординат) – по аналогии с предыдущим пунктом: A B = A x B x = x B — x A
— если точки A и B не лежат на прямой, перпендикулярной одной из координатных осей, найдем расстояние между ними, выведя формулу расчета:
Мы видим, что треугольник А В С является прямоугольным по построению. При этом A C = A x B x и B C = A y B y . Используя теорему Пифагора, составим равенство: A B 2 = A C 2 + B C 2 ⇔ A B 2 = A x B x 2 + A y B y 2 , а затем преобразуем его: A B = A x B x 2 + A y B y 2 = x B — x A 2 + y B — y A 2 = ( x B — x A ) 2 + ( y B — y A ) 2
Сформируем вывод из полученного результата: расстояние от точки А до точки В на плоскости определяется расчётом по формуле с использованием координат этих точек
A B = ( x B — x A ) 2 + ( y B — y A ) 2
Полученная формула также подтверждает ранее сформированные утверждения для случаев совпадения точек или ситуаций, когда точки лежат на прямых, перпендикулярных осям. Так, для случая совпадения точек A и B будет верно равенство: A B = ( x B — x A ) 2 + ( y B — y A ) 2 = 0 2 + 0 2 = 0
Для ситуации, когда точки A и B лежат на прямой, перпендикулярной оси абсцисс:
A B = ( x B — x A ) 2 + ( y B — y A ) 2 = 0 2 + ( y B — y A ) 2 = y B — y A
Для случая, когда точки A и B лежат на прямой, перпендикулярной оси ординат:
A B = ( x B — x A ) 2 + ( y B — y A ) 2 = ( x B — x A ) 2 + 0 2 = x B — x A
Расстояние между точками в пространстве
Исходные данные: прямоугольная система координат O x y z с лежащими на ней произвольными точками с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить расстояние между этими точками.
Рассмотрим общий случай, когда точки A и B не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки A и B плоскости, перпендикулярные координатным осям, и получим соответствующие точки проекций: A x , A y , A z , B x , B y , B z
Расстояние между точками A и B являет собой диагональ полученного в результате построения параллелепипеда. Согласно построению измерения этого параллелепипеда: A x B x , A y B y и A z B z
Из курса геометрии известно, что квадрат диагонали параллелепипеда равен сумме квадратов его измерений. Исходя из этого утверждения получим равенство: A B 2 = A x B x 2 + A y B y 2 + A z B z 2
Используя полученные ранее выводы, запишем следующее:
A x B x = x B — x A , A y B y = y B — y A , A z B z = z B — z A
A B 2 = A x B x 2 + A y B y 2 + A z B z 2 = x B — x A 2 + y B — y A 2 + z B — z A 2 = = ( x B — x A ) 2 + ( y B — y A ) 2 + z B — z A 2
Итоговая формула для определения расстояния между точками в пространстве будет выглядеть следующим образом:
A B = x B — x A 2 + y B — y A 2 + ( z B — z A ) 2
Полученная формула действительна также для случаев, когда:
— лежат на одной координатной оси или прямой, параллельной одной из координатных осей.
Примеры решения задач на нахождение расстояния между точками
Исходные данные: задана координатная прямая и точки, лежащие на ней с заданными координатами A ( 1 — 2 ) и B ( 11 + 2 ) . Необходимо найти расстояние от точки начала отсчета O до точки A и между точками A и B .
Решение
- Расстояние от точки начала отсчета до точки равно модулю координаты этой точки, соответственно O A = 1 — 2 = 2 — 1
- Расстояние между точками A и B определим как модуль разности координат этих точек: A B = 11 + 2 — ( 1 — 2 ) = 10 + 2 2
Ответ: O A = 2 — 1 , A B = 10 + 2 2
Исходные данные: задана прямоугольная система координат и две точки, лежащие на ней A ( 1 , — 1 ) и B ( λ + 1 , 3 ) . λ – некоторое действительное число. Необходимо найти все значения этого числа, при которых расстояние А В будет равно 5 .
Решение
Чтобы найти расстояние между точками A и B , необходимо использовать формулу A B = ( x B — x A ) 2 + y B — y A 2
Подставив реальные значения координат, получим: A B = ( λ + 1 — 1 ) 2 + ( 3 — ( — 1 ) ) 2 = λ 2 + 16
А также используем имеющееся условие, что А В = 5 и тогда будет верным равенство:
λ 2 + 16 = 5 λ 2 + 16 = 25 λ = ± 3
Ответ: А В = 5 , если λ = ± 3 .
Исходные данные: задано трехмерное пространство в прямоугольной системе координат O x y z и лежащие в нем точки A ( 1 , 2 , 3 ) и B — 7 , — 2 , 4 .
Решение
Для решения задачи используем формулу A B = x B — x A 2 + y B — y A 2 + ( z B — z A ) 2
Подставив реальные значения, получим: A B = ( — 7 — 1 ) 2 + ( — 2 — 2 ) 2 + ( 4 — 3 ) 2 = 81 = 9
Как находить расстояние вектора
Длина вектора Расстояние между двумя точками в пространстве
Длина вектора в пространстве
Длиной (или модулем) вектора называется расстояние между началом и концом вектора.
Длина вектора a выражается через его координаты следующей формулой:
Пример
Длина вектора $a\left\ \right\>$ равна
Расстояние между двумя точками в пространстве
Расстояние d между точками в пространстве A1 , A2 представляется формулой
Пример
Расстояние между точками A1 и A2
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.3 / 5. Количество оценок: 8
Оценок пока нет. Поставьте оценку первым.
3 комментария
найти расстояние между точками с(-2;1;-2) д (-1;2;1) м (-1;0;2) н (1;-1;2) найти 3 вектора сд — 2 вектора мн
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы />и />.
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами />и />. Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами />и />:
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму:
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов />и />, а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
То есть A + C + D = 0.
Аналогично для точки K:
Получили систему из трех уравнений:
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
Выразим C и B через A и подставим в третье уравнение:
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике»
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор />или, еще проще, вектор />.
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Длина вектора — основные формулы
Время чтения: 16 минут
Основные понятия вектора
Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.
Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».
Вектор — это отрезок с определённой длиной и направлением.
Графическое изображение вектора — отрезок который имеет указание направления в виде стрелки.
Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.
Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.
- Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
- Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.
- Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
- Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
- Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.
Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.
Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.
Как найти длину вектора
Модуль вектора а будем обозначать .
Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор />имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора />, через известные нам координаты aₓ и aᵧ.
На взятой системе координат, от её начала отложим вектор В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.
Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует
Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора получаем
Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:
Когда вектор дан в формате разложения по координатным векторам
, то вычислить его можно по той же формуле
, в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат
, в данной системе координат.
Чтобы рассчитать длину = (3, √x), расположенного в прямоугольной системе координат.
Чтобы найти модуль вектора используем ранее приведённую формулу
Ответ:
Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор =(aₓ ; aᵧ ; a
)
В таком случае \( AO^2=OA_x^2+OA_y^2+OA_z^2 \) (из рисунка видно, что АО — диагональ прямоугольного параллелепипеда), поэтому
из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OA />=a />, а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:
Ответ:
Длина вектора через координаты точек начала и конца
Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.
Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле
При этом формула вычисления длины вектора для трёхмерного пространства, с координатами
и
), будет следующей:
Для прямой системы координат, найти длину вектора \( \overrightarrow\) , где A(1,√3) B(-3,1)
Решение
Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:
Существует второй вариант решения, где формулы применяются по очереди:
Ответ:
Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,\(λ^2\))
Длина вектора по теореме косинусов
Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.
В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
\( KM^2=AK^2+AM^2-2\cdot AK\cdot AM\cdot\cos\frac \)
\(=2^2+4^2-2\cdot2\cdot4\cdot\cos\frac \)
\(=4+16-16\cos\frac \)
\(=20-8=12 \)
Получается \(KM=\sqrt \)
Ответ: \( \left|\overrightarrow \right|=\sqrt \)
Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.
длина вектора формула для трёхмерного пространства;
длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; \( \left|\vec\right|=\sqrt \) если известны координаты начала и конца вектора на плоскости.
Существует также формула длины вектора перемещения: \( \left|\vec \right|=\sqrt \) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.
В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.
Применение векторов в других сферах
Понятие и вычисление вектора важно не только в математике, но и других науках:
- в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
- в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
- в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
- географии. Вектором обозначается движение воздушных масс, или течение реки;
Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.