Как построить кардиоиду
Перейти к содержимому

Как построить кардиоиду

  • автор:

2.4. Кардиоида

Оп р е д е л е н и е 12. Кардиоида– плоская кривая, уравнение в полярных координатах которой имеет вид: .

Кардиоида описывается точкой М окружности радиусом а, катящейся по окружности с таким же радиусом. Кардиоида симметрична относительно полярной оси (рис. 8). Случаи расположения кардиоиды в ПСК приведены в табл. 3.

Т а б л и ц а 3

Расположение кардиоиды в ПСК

Уравнение в ПСК

Уравнение в ПСК

2.5. Лемниската Бернулли

Оп р е д е л е н и е 13. Лемниската Бернулли (от лат.lemniscatus – украшенный лентами) – в ДПСК плоская алгебраическая кривая 4-го порядка (рис. 9).

Произведение расстояний каждой точки М лемнискаты Бернулли до двух данных точеки (фокусов) равно квадрату половины расстояния между и Кривая симметрична относительно осей и начала координат. Впервые была рассмотрена Я. Бернулли (1694).

Случаи расположения лемнискаты в ПСК приведены в табл. 4.

Т а б л и ц а 4

Расположение лемнискаты в ПСК

Уравнение в ДПСК

Уравнение в ПСК

2.6. Правило построения кривых в полярной системе координат

Построение кривых в ПСК можно осуществлять по точкам следующим образом.

1. Найти пределы изменения полярного угла, решая неравенство (так как– расстояние, величина всегда неотрицательная). При его решении пользуемся данными табл. 5.

Если функция периодическая, то необходимо выбрать главные значения угловили(удобные для конкретного примера). Если функциянепериодическая, то.

3. Составить таблицу значенийи: будем давать значения полярному углучерез произвольный промежутоки вычислять соответствующее значение, подставляя значенияв функцию.

4. По таблице построить точки с полученными координатами .

Как построить линию в полярной системе координат?

На предыдущем уроке мы познакомились с полярными координатами, а также научились строить отдельно взятые точки и распространённые кривые в данной системе координат. Давайте подведём краткие промежуточные итоги и ответим на важный вопрос:
как построить линию в полярной системе координат?

– Сначала необходимо отметить полюс, изобразить полярную ось и указать масштаб. Кроме того, на первоначальном этапе желательно найти область определения функции, чтобы сразу же исключить из рассмотрения лишние угловые значения.

– В большинстве случаев потребуется найти десяток-другой точек, принадлежащих линии. Но иногда можно обойтись меньшим количеством, а то и вовсе отделаться схематическим чертежом.

– На следующем шаге следует прочертить угловые направления и отметить найденные точки. Как это сделать с помощью каменного топора транспортира, циркуля и линейки, я подробнейшим образом объяснил в начале статьи о полярных координатах.

– И, наконец, отложенные точки нужно аккуратно-аккуратно соединить линией (линиями).

Отработаем алгоритм построения на более основательных типовых задачах:

Построить по точкам линию, заданную в полярной системе координат уравнением , рассматривая значения угла с интервалом в рад. Найти уравнение линии в прямоугольной системе координат.

Решение: найдём область определения. Поскольку полярный радиус неотрицателен, то:

Очевидно, что условие выполнено для любого значения «фи», но, тем не менее, расскажу об удобном графическом способе решения тригонометрического неравенства: изобразите на черновике (или представьте мысленно) график функции левой части неравеснтва и прямую правой части неравенства. Непосредственно по чертежу видно, что синусоида расположена не ниже прямой , а значит, неравенство выполнено для любого значения «икс».

Итак, на угол не наложено никаких ограничений, и нам предстоит «перепахать» весь круг от 0 до , причём, по условию сделать это требуется строго с интервалом в рад. (22,5 градусов). Ложку в зубы, калькулятор в руки:

и так далее, пока не будет пройден весь оборот до «двух пи».

На практике обычно не расписывают подробные вычисления, а сразу заносят результаты в таблицу:
Таблица значений полярного угла и соответствующих значений полярного радиуса
Рекомендую использовать мой расчётный макет, созданный в MS Excel, который позволит буквально в пару щелчков вычислить все значения «эр», сэкономив целый вагон времени. Программу можно раздобыть на странице Математические формулы и таблицы. Особо нетерпеливым читателям предлагаю также воспользоваться handmade-продуктом и быстро начертить заготовку, ориентируясь по клеточкам:
Полярная система координат с разметкой углов через равный промежуток
Углы проставлены для удобства и на чистовике, понятно, их записывать не надо.

…поймал себя на мысли, что уже добрые пару лет не выполнял чертежи от руки. Сейчас аккуратно извлеку тетрадь из сканера и спрячу её в укромном месте – лет через 20-30 продам на антикварном аукционе за 100500 золотых червонцев =) Шутки шутками, а оперативная память моего первого компьютера ZX Spectrum составляла 32 килобайта. КИЛОбайта. При этом программисты умудрялись затолкать туда аркадные игры с сотнями экранов и отличной графикой (по меркам 8-разрядных машин, конечно). Сейчас на дворе февраль 2014 года, а ведь с той поры не прошло и пары десятилетий. Боюсь, что шутливое сравнение чертёжных инструментов с каменным топором довольно скоро перестанет быть шуткой =)

Кардиоида

После ностальгических воспоминаний отметим найденные точки на чертеже и аккуратно соединим их линией:

Напоминаю, что одинаковые значения радиуса эффективнее засекать циркулем, а слишком малые значения для углов допустимо отметить и «на глазок».

Найдём уравнение линии в декартовой системе координат. Для этого используем тоже уже знакомый приём – домножим обе части уравнения на «эр»:

Перенесём «икс» налево и возведём обе части в квадрат:

Дальнейшее возведение левой части в квадрат только усложнит запись, поэтому результат целесообразнее оставить в таком виде.

Из полученного уравнения следует, что кардиоида – это алгебраическая линия 4-го порядка, обратите внимание, насколько сложной получилась её формула по сравнению с полярной системой координат. Алгебраическим линиям 3-го, 4-го, 5-го, 6-го и высших порядков посвящены серьёзные исследования, и грибники без труда могут отыскать море информации по данной теме. Ну а я, как обычно, предлагаю вкусную и здоровую пищу на каждый день:

Линия задана уравнением в полярной системе координат. Требуется:

1) построить линию по точкам, придавая значения через интервал , начиная с и заканчивая ;

2) найти уравнение линии в декартовой системе координат;

3) определить вид кривой.

Типовая формулировка, предвещающая час (а то и больше) усердного пыхтения, а нередко и чертыханья студента. Но только не того, кто прочитал эту и предыдущую статью о полярных координатах! Примерный образец оформления задачи в конце урока.

Рассмотрим ещё ряд важных особенностей решения:

Линия задана уравнением в полярной системе координат. Требуется:

1) построить линию по точкам, начиная от до и придавая значения через промежуток ;

2) найти уравнение данной линии в прямоугольной системе координат;

3) назвать линию, найти координаты фокусов и эксцентриситет.

Решение: найдём область определения:

Заметьте, что ноль в знаменателе нас тоже не устраивает, поэтому неравенство становится строгим. Перенесём косинус направо и развернём избушку к лесу задом:

Графическое решение тригонометрического неравенства

Неравенство несложно решить аналитически, но для лучшего понимания я опять воспользуюсь графическим методом. Изобразим на черновике или представим мысленно графики функций , при этом нас будет интересовать только один период – от до . Условию удовлетворяет та часть синусоиды, которая расположена ПОД прямой :

То есть, в нашем распоряжении оказываются почти все значения угла за исключением макушки, расположенной на симметричном отрезке .

Таким образом, . Арккосинус составляет примерно 37 градусов, поэтому из рассмотрения исключаем углы и . Заполним расчётную таблицу с прочерками в соответствующих ячейках:

Чайники могут, в принципе, вообще не загружаться областью определения и ставить тире по факту: получилось отрицательное значение «эр» – поставили.

Гипербола в полярной системе координат

Выполним чертёж:

На него не вместились точки, соответствующие значениям , но не уменьшать же из-за этого масштаб. Сойдёт и так.

2) Найдём уравнение линии в прямоугольной системе координат. По всем признаком должна получиться гипербола.

Избавляемся от дроби:

Используем формулы перехода :

Дальнейшие действия хорошо знакомы из практикума Задачи с линиями 2-го порядка:

3) Данная линия представляется собой гиперболу с центром в точке , действительной полуосью , мнимой полуосью . Впрочем, формально по условию можно было и не упоминать о деталях.

Вы спросите: «но в полярной же системе координат прорисовалась только одна ветвь гиперболы, поэтому не ошибочно ли говорить о целой гиперболе?». Не ошибочно!
И вот по какой причине: если подразумевать обобщённую полярную систему координат с отрицательными значениями «эр», то при значениях угла из интервала прорисуется левая ветвь! Желающие могут провести самостоятельную проверку и анализ этого факта. Я не сторонник и даже противник обобщенных полярных координат, но в данном случае всё получается ловко и чертовски удобно – можно как бы и не оговариваться о том, что на чертеже только одна ветвь гиперболы.

Вычислим координаты фокусов и эксцентриситет. По условию уравнение не нужно приводить к каноническому виду, а значит, требуемые вещи проще найти напрямую – с учётом параллельного переноса гиперболы, к тому же, она не повёрнута.

Вычислим значение и поправкой на параллельный перенос в точку найдём фокусы:

Педантичные люди могут ещё записать развёрнутый ответ.

Заключительное задание для самостоятельного решения:

Линия задана уравнением в полярной системе координат. Требуется:

1) построить линию по точкам, начиная от до и придавая значения через промежуток ;

2) найти уравнение данной линии в прямоугольной системе координат и определить её вид.

3) Привести уравнение к каноническому виду и выполнить чертёж в прямоугольной системе координат. Найти фокусы кривой и её эксцентриситет.

Внимательно проанализируйте, что и в каком порядке требуется выполнить по условию. Сам много раз налетал – краем глаза показалось одно, а нужно совсем другое. В образце решения приведение уравнения линии 2-го порядка к каноническому виду выполнено академическим способом.

На основе полярных координат плоскости базируются цилиндрические и сферические координаты пространства. В частности, угловые величины широко используются в навигации (не зря упоминались лётчики и самолёты) и астрономии. Действительно, представьте земной шар (а если строго, эллипсоид), эллиптические орбиты планет и вы поймёте, что распиаренная прямоугольная система координат как-то здесь совсем не в тему. Ну а мне пора плотно прикрыть дверь аналитической геометрии и вернуться к матанализу, где полярные координаты тоже эксплуатируются на полную катушку.

До скорых встреч!

Решения и ответы:

Пример 7: Решение: 1) Найдём область определения функции:
– любое.
Заполним таблицу требуемыми значениями угла и соответствующими значениями полярного радиуса:

Выполним чертёж:
Эллипс в полярной системе координат
2) Найдём уравнение линии в декартовой системе координат:

Используем формулы :

– уравнение линии в прямоугольной системе координат.
3) Данная кривая представляет собой эллипс с центром симметрии в точке , большой полуосью и малой полуосью .

Пример 9: Решение: 1) Найдём область определения функции:

Заполним расчётную таблицу:

Выполним чертёж:
Парабола в полярной системе координат
2) Найдём уравнение линии в декартовой системе координат:

Используем формулы :

– искомое уравнение. Это парабола.

3) Приведём уравнение линии к каноническому виду с помощью перехода к новой системе координат , которая получается путём поворота исходной системы координат на рад. вокруг точки и её параллельным переносом центром в точку (координаты – в старой системе координат).
В результате получено каноническое уравнение параболы , фокальный параметр которой равен . Выполним чертёж:
Парабола, приведённая к каноническому виду, в новой прямоугольной системе координат
Найдём фокус: .
Эксцентриситет любой параболы равен единице.

Автор: Емелин Александр

(Переход на главную страницу)

Contented.ru – онлайн школа дизайна

SkillFactory – получи востребованную IT профессию!

Как построить кардиоиду

При написании статьи использовались материалы сайта arbuz.ferghana.ru

Кардиоида (Cardioid)

Если использовать две окружности с одинаковыми радиусами и вращать одну вокруг другой, то получится кардиоида (греч.кардиа — сердце) — по мнению математиков, получаемая кривая отдаленно напоминает сердце

Формула r = 2a(1 + cos(theta)) рисует кардиоиду

Лимакона или Улитка Паскаля (Limacon of Pascal)

А как поведут себя кривые, если брать точку не самой катящейся окружности, а внутри ее, сместив в сторону от центра? Тогда мы получим кривую, получившуюся название Улитка Паскаля или лимакона

Лимакона была открыта французским математиком Этьеном Паскалем (отцом знаменитого ученого Блеза Паскаля)

Формула r = b + 2a cos(theta) рисует лимакону (улитку Паскаля)

При b = 2a лимакона становится кардиодидом

Эффекты с кривыми

Итак, мы знаем формулы окружности, кардиоиды и улитки Паскаля. Видно, что формулы весьма схожи, осталось объединить их в один цикл для получения первого эффекта

В нашем примере a — величина постоянная, а b меняется в цикле от b=0 до b=8. Вы видите, как меньшая петля вырождается в точку, а большая удваивает свой радиус, превращаясь в кардиоиду.

Доработаем рисунок. Изменим чуточку программу и получим красивый узор

Конхоида

Представим Улитку Паскаля как конхоиду. Не углубляясь в теорию кривых, дадим такое нестрогое определение: конхоида — это геометрическое место точек, полученное перемещением каждой точки первоначальной кривой вдоль определенным образом заданных поверхностей. Для Улитки Паскаля первоначальной кривой служит самая обычная окружность, а переносятся точки вдоль линий, проходящих через точку, лежащую на этой окружности. Поясним графически. На рисунке мы выбираем на окружности неподвижную точку Р и переменную точку М, которую мы сдвигаем вдоль линии, соединяющей точки Р и М на какое-то фиксированное расстояние а.

Полученные семейства точек и есть конхоида окружности относительно фиксированной точки. Программа позволяет получить ожидаемые картинки. Сначала назначим а=0.25R. (Постепенно увеличивайте эту величину). Обратите внимание на необходимость сделать два оборота (центральный угол, он же переменная f от 0 до 720 градусов) — один сдвигает точки наружу, а второй оборот — внутрь окружности. Основная тонкость переход от центрального угла окружности, по которому мы проходим в цикле (переменные f в градусах или t в радианах), к углу линии, соединяющей постоянную точку с текущей на окружности c горизонтальной осью (переменная alfa)

Педальная кривая

Определение педальной кривой для первоначальной давать не будем, сразу перейдем к делу. В текущей точке окружности (пробегаемой в цикле по всей окружности) проведем касательную линию, а потом из фиксированной точки (в нашем случае лежащей на окружности) проводим перпендикуляр к этой касательной. Совокупность этих перпендикуляров огибает, как вы уже догадались, кардиоиду. Это в частном случае расположения фиксированной точки на окружности, при смещении этой точки внутрь окружности или наружу ее получим все семейство Улитки Паскаля. В приведенной программе все также счетчик цикла f центральный угол в градусах, t он же в радианах, beta угол наклона касательной в соответствующей точке цикла, k тангенс этого угла. Уравнение лини, как известно, y=kx+b, для каждой касательной находим b=y-kx. Для взаимно перпендикулярных прямых k1=-1/k, а b1=0 так как все перпендикуляры проходят через точку у которой y= 0. Решая совместно уравнения касательной и перпендикуляра к ней, находим координаты точки пересечения и рисуем в них маленький красный кружок. Эти кружки и нарисуют нам педальную кривую к окружности относительно точки.

Создание шедевров

Будем брать точки все на той же нашей окружности, ставить в них иголку циркуля и рисовать новые окружности так, чтобы они все проходили через все ту же фиксированную точку на окружности. Общая огибающая (так называемая энвелопа) к полученным окружностям будет конечно, все уже догадались кардиоидой. А при смещении фиксированной точки получим всю гамму Улиток Паскаля. Этот процесс иллюстрирует картинка и программа, нарисовавшая ее. Маленькими черными кружками отмечены лежащие на исходной окружности точки центры проводимых окружностей. Здесь а смешение фиксированной точки для ваших экспериментов, пока равно нулю. Главное в этой программе посчитать радиус рисуемой в каждой точке цикла окружности, хотя для этого достаточно теоремы Пифагора, надо только уметь ее применить к месту. Как вы уже заметили, расцветка красивая, цвет окружностей меняется в течение цикла. Достаточно всего лишь уменьшить шаг цикла и мы получим красивую картину.

Теперь нас отделяет от создания шедевра один маленький шаг делаем толщину линии побольше (например, 55 пикселей) и раскрашиваем каждый четный круг в желтый цвет, а нечетный в черный. И получаем шедевр поп-арта, которому позавидовал бы сам Малевич.

Продолжим наши опыты. Для текущей точки на окружности выделяем центральный угол с горизонтальной осью, под таким же углом проводим луч из фиксированной точки (все той же, на окружности), до пересечения с окружностью. Точку пересечения луча с окружностью соединяем с первоначальной точкой и находим середину полученной хорды. Вы будете смеяться, но эти середины хорд лежат на Улитке Паскаля.

Текущий центральный угол нам выделять не надо мы и так от него в цикле все и строим. Единственный технический момент нахождение точки пересечения окружности и линии, проходящей через фиксированную точку (параллельно радиусу, проведенному в текущую точку). Для нахождения координат точки пересечения линии, проходящей через фиксированную точку и окружности, надо совместно решить их уравнения. Уравнение линии y=kx+b, причем b=0 так как точка лежит на оси x, а k=tan(t), где t угол наклона линии в радианах. А уравнение окружности (x-r)2+y2=r2 так как центр сдвинут на величину r относительно начала координат, проходящего через фиксированную точку. Исключив y и решив относительно x, получим x=2r/(1-k2). Подставив это значение в уравнение линии, получим y точки на круге. А уж зная координаты двух точек найти координаты середины соединяющего их отрезка совсем просто они равны полусумме координат точек. Все это и реализовано в приведенной программе.

Попробуем рассмотреть распространение волн и найти закономерности. Если мы заглянем в круглый зал и крикнем, то наверняка будут точки, в которые звук наш прилетит громче, чем в какие-то другие. Во всяком случае, мы можем построить модель распространения волн в такой комнате, или, что тоже самое, лучей в окружности, причем, будем рассматривать только первый отраженный луч. Вы, даже не читая дальше, поспорите, что отраженные лучи дадут кардиоиду. И будете совершенно правы! Из уважения к читателям программу не привожу после стольких тренировок не написать ее просто неприлично. Единственное, что нужно помнить, что угол падения равен углу отражения и что внутренний угол вдвое меньше центрального угла, опирающегося на ту же дугу.

Паутина

Любителям математических картинок известна так называемая паутина. На окружности берутся точки с определенным шагом, и каждая из них соединяется с такой же точкой, но сдвинутой по фазе в какое-то число раз (n). Это число можно задавать или брать случайным образом. Точки пересечения хорд сливаются в муаровый узор самых замысловатых форм. Идея так притягательна, что настоятельно рекомендую всем попробовать реализовать ее самостоятельно, чтобы поиграть с параметрами и насладиться эффектами. При n= 1 не нарисуется ничего, так как начальные и конечные точки линий совпадают, зато при увеличении n будут появляться фигуры с узлами, причем количество узлов равно n-1. Нас же особенно интересует случай для n= 2, при этом нарисуется фигура, хорошо уже изученная нами кардиоида. При n= 3 так называемая нефроида с двумя узлами. Если n-1 делитель числа 360, то картинка проявляет некоторую упорядоченность. Приводим картинки для значений n= 2 (наша любимая кардиоида)

Использование таймера

Чтобы не вводить каждый раз вручную значения n, а поручить эту работу компьютеру, то можно наблюдать интересный калейдоскоп узоров

XI Международная студенческая научная конференция Студенческий научный форум — 2019

ПОСТРОЕНИЯ КАРДИОИДЫ В ПОЛЯРНОЙ СИСТЕМЕ КООРДИНАТ ПРИ ПОМОЩИ MATHCAD

Графические возможности пакета инженерных расчётов Mathcad достаточно просты и удобны. Отображение функций,которые достаточно сложно воспроизводить в декартовой системе координат является одним из преимуществом данного пакета. В пакете MathCAD встроено несколько различных типов графиков, которые можно разделить на двумерные и трехмерные графики[1]. В свою очередь двумерные графики делятся наXY (декартовый) график (XY Plot);полярный график (PolarPlot)[2]. Наша задача будет заключаться в построении Кардиоиды в полярной системе координат с различными параметрами.

Название кривая получила из-за сходства со стилизированным образом сердца. Имеет один касп (особая точка, в которой кривая линия разделяется на несколько ветвей.

Кардиоиду можно определить как траекторию точки, лежащей на окружности круга радиуса , который катится по окружности неподвижного круга с таким же радиусом. Она будет представлять собой, эnиuиклоиду с модулем [3,4].

Внешний вид и размерность кардиоиды зависят от функции, задающей её.

Общее уравнение кардиоиды в полярных координатах приведено ниже:

Следующие рисунки (Рис. 1-5) с заданными параметрами являются примерами отображения кардиоиды.

В.А. Охорзин. Прикладная математика в системе MATHCAD Учебное пособие. 3-е изд. СПб.: Лань, 2009, 352с. ISBN: 978-5-8114-0814-6.

Савелов А. А. Плоские кривые, 1960

КирьяновД.В. Mathcad 15/ MathcadPrime 1.0. Оформление, издательство "БХВ-Петербург", 2011.

Блинова И.В., Попов И.Ю. Кривые, заданные параметрически и в полярных координатах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *