Как определить периодичность функции
Перейти к содержимому

Как определить периодичность функции

  • автор:

Четность и нечетность функции. Период функции. Экстремумы функции

Пусть функция задается формулой: y=2x^<2>-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^<2>-3=-2,5 .

Взяв любое значение, принимаемое аргументом x в формуле y=2x^<2>-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x −2 −1 0 1 2 3
y −4 −3 −2 −1 0 1

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

D(f)=(-\infty ; +\infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^<3>-7 \cdot (-x)^<7>= -3x^<3>+7x^<7>= -(3x^<3>-7x^<7>)= -f(x) .

Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.

Периодическая функция

Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T \neq 0 .

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

График периодической функции с периодом T

Промежутки, где функция положительная, то есть f(x) > 0 — отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_<1>; x_<2>) \cup (x_<3>; +\infty )

График функции f(x) с промежутками на которых функция положительна

Промежутки, где функция отрицательная, то есть f(x) < 0 — отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_ <1>) \cup (x_<2>; x_ <3>)

График функции f(x) с промежутками на которых функция отрицательна

Ограниченность функции

Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A , для которого выполняется неравенство f(x) \geq A для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt<1+x^<2>> так как y=\sqrt<1+x^<2>> \geq 1 для любого x .

Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B , для которого выполняется неравенство f(x) \neq B для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt<1-x^<2>>, x \in [-1;1] так как y=\sqrt<1+x^<2>> \neq 1 для любого x \in [-1;1] .

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) > y(x_<2>) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) < y(x_<2>) .

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

График четной функции

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

График четной функции

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

График нечетной функции

г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x < 0

График нечетной функции

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_ <0>, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_ <0>), и для них тогда будет выполняться неравенство f(x) > f(x_<0>) . y_ — обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_ <0>, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_ <0>), и для них тогда будет выполняется неравенство f(x) < f(x^<0>) . y_ — обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f'(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_ <0>, появится экстремум в этой точке.

Периодичность функций

Функция называетсяпериодической, если существует такое число , что для любого значениях из области определения выполняется равенство

,

число Т называется периодом функции.

Примеры периодических функций: ,,,.

Заметим, что периодическую функцию достаточно исследовать в пределах одного периода, т.е. при .

Простейшие преобразования графиков

Пусть в данной системе координат вычерчен график некоторой функции

Из этого графика с помощью специальных приемов легко получить график сходных функций; таких как

,

а также более общего вида

,

где — некоторые константы.

График функции получается растяжениемили сжатиемвm раз исходного графика вдоль оси Оy.

Если же , то, построив сначала график функции, затем строим симметричный с ним относительно осиОх искомый график функции .

График функции получается с помощью параллельного переноса (сдвига) графикавдоль осиОy вверх или внизнаn единиц.

График функции получается из графикасжатиемили растяжениемего ва раз вдоль оси Ох. (т.е. к оси Оy).

График функции y=f(x+b) получается из графика y=f(x) с помощью параллельного переноса (сдвига) его вдоль оси Ох влево (b>0) или вправо (b<0) на b единиц.

Построение графиков подобного рода в общем случае

сводится к проведению в соответствующем порядке операций 1-4.

1. . Вычислить:,,,

2. . Вычислить:,,,

3. Найти область определения функций:

а) ;

б) ;

в) ;

г) ;

д) ;

е) ;

ж) ;

з) ;

и) ;

к) .

4. Исследовать функции на четность или нечетность

а) ;

б) ;

в) ;

г) ;

д) ;

е) .

5. Найти наименьший период функций:

а) ; б)

6. Построить графики функций:

а) ;

б) ;

в) ;

г) ;

д) ;

е)

ж) ;

з)

и)

Задание 1. Найти области определения и значения функций

1)

11)

21)

2)

12)

22)

3)

13)

23)

4)

14)

24)

5)

15)

25)

6)

16)

26)

7)

17)

27)

8)

18)

28)

9)

19)

29)

10)

20)

30)

Периодическая функция

Периодическая функция — это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого числа T (отличного от нуля).

Функция y=f(x) называется периодической, если существует такое число T≠0, что для любого x из области определения этой функции выполняются равенства:

Число T называют периодом функции y=f(x).

Из определения следует, что значения x-T и x+T также входят в область определения функции y=f(x).

Свойства периодических функций

  1. Если число T является периодом функции y=f(x), то и число -T также является периодом этой функции.
  2. Если числа T1 и T2 являются периодами функции y=f(x) и T1+T2≠0, то и число T1+T2 также является периодом функции y=f(x).
  3. Если число T является периодом функции y=f(x), то и любое число вида nT, где n∈Ζ и n≠0 также является периодом этой функции.
  4. Если число T является периодом функции y=f(x), то число T/k является периодом функции y=f(kx+b) (где k≠0).
  5. Если число T является периодом функции y=f(x) и функции y=g(x), то сумма, разность, произведение и частное этих функций являются периодическими функциями с тем же периодом T.

1) По определению периодической функции для любого x из области определения y=f(x) если T — период функции, то f(x-T)= f(x)=f(x+T).

Вместо каждого T подставим в это равенство -T:

f(x+T)=f(x)=f(x-T), то есть -T также является периодом функции y=f(x).

2) Для любого x из области определения y=f(x) если T1 — период функции, то

Так как T2 также является периодом функции y=f(x), то для аргумента x-T1

Для аргумента x+T1

Следовательно, число T1+T2 является периодом функции y=f(x).

3) Это свойство непосредственно вытекает из свойства 2, если T взять в качестве слагаемого n раз.

4) Если T — период функции f(x), то для аргумента kx+b

\[ f(k(x - \frac{T}{k}) + b) = f(kx + b) = \]

\[ = f(k(x - \frac{T}{k}) + b) \]

Значит число T/k — период функции f(kx+b).

5) Эти свойства следуют непосредственно из определения.

Например, для суммы f(x) и g(x):

Из свойства 3 следует, что каждая периодическая функция имеет бесконечно много периодов.

Если среди всех периодов функции y=f(x) существует наименьший положительный период, то его называют главным (или основным) периодом функции.

Примеры периодических функций

1) Поскольку для любого x выполняются равенства

то функции y=sin x и y=cos x являются периодическими с периодом T=2π.

2) Так как для любого x из области определения функции y=tg x выполняется равенство

tg (x-π)=tg x =tg (x-π), то y=tg x — периодическая функция с периодом T=π.

Аналогично, y=ctg x — периодическая функция с периодом T=π.

3) Так как для любого действительного числа x и любого рационального числа k выполняется равенство D(x+k)=D(x), то функция Дирихле D(x) — периодическая с периодом T=k, где k∈Q, k≠0.

Поскольку k — любое рациональное число, невозможно его указать наименьшее положительное значение. Следовательно, функция Дирихле не имеет главного периода.

4) Рассмотрим частный случай линейной функции y=b, b — действительное число (b∈R). Эта функция определена на множестве действительных чисел и при любых значениях аргумента принимает единственное значение y=b, то есть для любого действительного числа m (m∈R), y(x)=y(x+m)=b.

Значит y=b — периодическая функция с периодом T=m, где m∈R, m≠0.

Так как m — любое действительное число, оно не имеет наименьшего положительного значения. Поэтому функция y=b не имеет главного периода.

5) Так как для любого действительного x и любого целого k выполняется равенство =, то функция дробной части числа y= — периодическая с периодом T=k, где k∈Ζ, k≠0.

Наименьшим положительным целым числом является единица. Следовательно, T=1 — главный период функции y=.

Главный период функций y=sin x и y=cos x T=2π.

Главный период функций y=tg x и y=ctg x T=π.

Если T — период функции y=sin x, то sin (x-2π)=sin x = sin (x-2π) для любого x.

В частности, при x= -T/2:

\[ \sin ( - \frac{T}{2} + T) = \sin ( - \frac{T}{2}), \]

\[ \sin ( - \frac{T}{2}) = \sin \frac{T}{2}, \]

\[ \sin \frac{T}{2} = - \sin \frac{T}{2}. \]

\[ \sin \frac{T}{2} + \sin \frac{T}{2} = 0, \]

\[ 2\sin \frac{T}{2} = 0, \]

\[ \sin \frac{T}{2} = 0. \]

\[ \sin x = 0 \Rightarrow x = \pi n,n \in Z, \]

\[ \sin \frac{T}{2} = 0,\frac{T}{2} = \pi n,n \in Z, \]

\[ T = 2\pi n,n \in Z. \]

То есть любой период функции y=sin x имеет вид 2πn, n∈Z.

Наименьшее положительное значение это выражение принимает при n=1 и оно равно T=2π.

Таким образом, 2π — главный период функции y=sin x.

Аналогично доказываются утверждения о главном периоде функций y=cos x, y=tg x и y=ctg x.

Из 4-го свойства периодических функций непосредственно следует, что для функций y=sin (kx+b) и y=cos (kx+b) (k≠0) наименьший положительный период

\[ T = \frac{{2\pi }}{{\left| k \right|}}, \]

а для функций y=tg (kx+b) и y=ctg (kx+b) (k≠0) наименьший положительный период

\[ T = \frac{\pi }{{\left| k \right|}}. \]

График периодической функции повторяется через промежутки длиной T (на оси Ox).

Поэтому периодичность функции используют для построения графика: достаточно построить часть графика на любом промежутке, длина которого равна величине наименьшего положительного периода T (например, на отрезке [0;T]), а затем выполнить параллельный перенос построенной части вдоль оси Ox на ±T, ±2T, ±3T, … .

grafik-periodicheskoj-funkcii

Дана часть графика

с периодом T на

промежутке длиной T.

Чтобы построить график функции, выполняем параллельный перенос этой части графика вдоль оси Ox на ±T, ±2T,… :

Как определить периодичность функции

Как определить периодичность функции

Если F(x) — функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Если F(x) — периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) — тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C — нет.

Если F1(x) и F2(x) — периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 — рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй — 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *