Как получить число пи
Перейти к содержимому

Как получить число пи

  • автор:

Что такое Число Пи

Число π (Пи) является математической константой, первоначально было определено как отношение длины окружности к её диаметру, является иррациональным числом и примерно равно 3.1415926535.

С помощью Пи мы ищем периметр окружности, а Пи называется именно так из-за того, что греческое слово περιμετρο («периметр») начинается именно с этой буквы.

Число Пи используют многие специалисты в своих профессиях, такие как: архитекторы, астрономы, физики, химики и другие.

Число Пи используется не только в математике (периметр), но и в строительстве башен, плотин и мостов, в астрономии — для вычислений орбиты спутника. Также в преобразованиях Фурье (применяется во многих областях науки), для вычисления общей теории относительности и для множества вычислений в статистике и квантовой механике.

Число пи полностью

Пи является иррациональным числом и поэтому имеет бесконечное количество знаков после запятой. С каждым годом разные страны устанавливают новые рекорды по вычислению количества знаков после запятой.

На данный момент науке уже известны более чем 2 триллиона знака после запятой. Неполное число Пи, с одной сотней знаков после запятой представлено далее:

Как получить число π

Разделить длину окружности на её диаметр ( C/d=π )

diametr_okryjnost

Для этого возьмите любую окружность (подойдёт любая тарелка или крышка), измерьте длину её окружности (C) и диаметр (d), а затем разделите первое на второе.

Вычисление Цзу Чунчжи (математик и астроном)

Этот способ очень простой, но даёт только 6 верных цифр после запятой. Вы можете разделить 355 на 113 (Пи≈355/113), это равно 3,1415929204 (а Пи ≈ 3,1415926535. ).

Формула Лейбница для вычисления π

π = (4/1) — (4/3) + (4/5) — (4/7) + (4/9) — (4/11) + (4/13).

Возьмите 4 («разделённое на 1», что даёт 4) и вычтите 4, разделённое на 3. Затем добавьте 4, разделённое на 5. Затем вычтите 4, разделённое на 7.

Продолжайте чередовать сложение и вычитание дробей с числителем 4 и знаменателем каждого последующего нечётного числа.

Чем больше раз вы это сделаете, тем более точное у вас будет значение пи.

История числа Пи

Число Пи известно уже почти 4000 лет. Одна вавилонская табличка (около 1900–1680 гг. до н. э.) указывает, что они обозначали это число как π = 3,125, что уже достаточно точное приближение к современному.

«Папирус Ахмеса» (папирус Ринда или папирус Райнда, около 1650 г. до н. э.) даёт нам представление о математике древнего Египта. Египтяне рассчитывали площадь круга по формуле, по которой приблизительное значение для Пи было 3,1605.

Первое вычисление числа Пи было сделано Архимедом (287–212 гг. до н. э.). Он определил, что истинное значение Пи находится между 3.10/71и 3.1/7.

На протяжении почти тысячи лет самым близким значением числа Пи было вычисление китайского математика и астронома Цзу Чунчжи (429—500 гг.), сделанное в 480-х годах. Он вывел следующее: 3,1415926 maiorПи maior3,1415927 и Пи ≈ 355/113.

На данный момент используется алгоритм Чудновских — это быстрый алгоритм, изобретённый братьями Чудновскими, для вычисления числа π. Он показывает более триллиона знаков после запятой.

В 1700-х годах математики начали использовать греческую букву π, введённую Уильямом Джонсом в 1706 году. Использование символа было популяризировано Леонардом Эйлером, который принял его в 1737 году.

Euler

Леонард Эйлер, математик, родился в 1707 г., Базель, Швейцария; умер:1783 г., Санкт-Петербург, Россия;
художник Иосиф Фридрих Август Дарбес.

А если бы мы не знали Пи?

Путешествия на автомобиле

Для начала пи позволяет нам точно рассчитывать и создавать окружности. Представьте, что колёса вашей машины немного отличаются друг от друга, каждое слегка смещено от центра. Вы не только будете постоянно тратить кучу денег на механика, но и поездки у вас также будут менее удобными.

Путешествия по воздуху

Пи играет важную роль в расчёте времени и расстояния путешествия на самолёте. Когда самолёты летают на большие расстояния, они летят по округлой дуге потому что, Земля круглая.

Ни телевизора, ни радио, ни телефонов

Инженеры используют пи для расчёта и оптимизации звуковых волн.

Казино

Всеми любимая формула нормального распределения (также называемая распределением Гаусса) считается с помощью пи. Проще говоря: пи играет ключевую роль в формулах по теории вероятности и статистике — поэтому с пи азартные игры становятся намного более предсказуемыми. И с этими расчётами люди открывают казино, зная наверняка, какой процент их клиентов будет выигрывать и проигрывать.

Не было бы многих игр, ведь футбольные, баскетбольные, теннисные и другие мячи должны быть абсолютно круглыми.

Число Пи интересные факты

Число π по-английски произносится «пай» — это означает пирог, а слово пирог по-русски начинается с «пи».

Число Пи имеет два неофициальных праздника в году: первый — 14 марта (в США эта дата записывается как 3.14), вторая — 22 июля (22/7 : деление 22 на 7 является приблизительным результатом Пи).

Станислав Улам, польский и американский математик, в 1965 году, написал на бумаге в клетку цифры, входящие в число пи. Он поставил в центре 3 и двигался по спирали против часовой стрелки, записывая числа после запятой, при этом он обводил все простые числа кружками.

Он пришёл одновременно в удивление и ужас, заметив, что кружки выстраивались вдоль прямых. После, с помощью специального алгоритма, математик сделал на основе этого рисунка цветовую картину, которую называют «Скатерть Улама».

Ulam

Скатерть Улама

Число Пи можно даже играть на музыкальном инструменте поставив ноты в его порядке.

Числу «Пи» поставили несколько памятников по всему миру.

monument_pi

Памятник Пи в Колумбии, построенный Обществом инженеров Norte Santandereana, он расположен между Авенида Либертадорес и Ла Диагональ Сантандер.

Существует стиль письма, который называется «пилиш» (от «пи», английский «pilish»), в котором длина последовательных слов соответствует цифрам числа πи. В первом слове произведения должно быть 3 буквы, во втором — одна, потом — четыре, следом — опять одна, затем пять, и так далее по цифрам π.

Например, такая поэма на английском языке:

Как запомнить число π

Один из самых популярных способов — это запомнить фразу, а затем посчитать количество букв в каждом слове.

Например, такие фразы:

  • Что я знаю о кругах? (3.1415);
  • Она и была, и будет уважаемая на работе (3,1415926);
  • Это я знаю и помню прекрасно — пи, многие знаки мне лишни, напрасны (3,14159265358).

Для того чтобы запомнить число Пи, также можно выучить небольшое стихотворение из книги Сергея Боброва «Волшебный двурог»:

“Чтобы нам не ошибаться,
Надо правильно прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
Ну и дальше надо знать,
Если мы вас спросим —
Это будет пять, три, пять,
Восемь, девять, восемь”.

как получили число пи?

π (произносится «пи») — математическая константа, равная отношению длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.
Проблеме π – 4000 лет. Исследователи древних пирамид установили, что частное, полученное от деления суммы двух сторон основания на высоту пирамиды, вырабатывается числом 3,1416. В Вавилоне в V в. до н. э. пользовались числом 3,1215, а в Древней Греции числом ( ) ≈ 3,1462643. В индийских «сутрах» VI – V в. до н. э. имеются правила, из которых вытекает, что π = 3,008.

Архимед (III в. до н. э.) для оценки числа π вычислял периметры вписанных и описанных многоугольников от шести до 96-ти. Такой метод вычисления длины окружности посредством периметров вписанных и описанных многоугольников применялся многими видными математиками на протяжении почти 2000 лет. В XV веке иранский математик Аль-Каши нашёл значение π с 16-ю верными знаками, рассмотрев вписанный и описанный многоугольники с 80.035.168 сторонами.

А голландский вычислитель – Лудольф Ван-Цейлен (1540 – 1610), вычисляя π, дошёл до многоугольников с 602 029 сторонами, и получил 35 верных знаков для π. Учёный обнаружил большое терпение и выдержку, несколько лет затратив на определение числа π. В его честь современники назвали π – «Лудольфово число». Согласно завещанию на его надгробном камне было высечено найденное им значение π.
Презентация: http://bigslide.ru/matematika/1478-eto-zagadochnoe-chislo-pi.html
еще: http://rpp.nashaucheba.ru/docs/index-3323.html

Делали, делали колеса и вдруг заметили, что если длину обода (длину окружности) разделить на длину диаметра, то получается всегда одно и то же число. Проверили на тысячи колес. БА! И правда, всегда одно и то же число, на самых разных колесиках.
Удобно-то как! Задумал сделать колесо определнного диаметра и сразу можешь посчитать, какой же длины обод надо заготовить.

Что такое число пи

Число $\pi$ (пи) — это константа, которая выражает отношение длины окружности к диаметру.

Число $\pi$ является иррациональным числом, то есть не может быть выражено рациональной дробью$\frac$ , а является бесконечной непериодической десятичной дробью $3,1414926535$ . В обиходе вполне достаточно знать три цифры числа $\pi-3,14$ ; но для более точных расчетов этого не достаточно. Для упрощения запоминания числа $\pi$ было придумано двустишие по правилам старой русской орфографии, которое позволяло легко запомнить одиннадцать его знаков:

Кто и шутя, и скоро пожелаетъ
«Пи» узнать число — ужъ знаетъ.

Для определения числа $\pi$ по нему, необходимо, сосчитать количество букв в каждом слове и написать эти цифры подряд (первую цифру отделить запятой).

В обычных условиях приближенное значение $\pi$ можно получить следующим образом:

  1. Взять круг, обмотать по краю круга нитью один раз.
  2. Измерить длину нити.
  3. Измерить диаметр круга.
  4. Разделить длину нити на длину диаметра. Получили число $\pi$ .

Например. Возьмем круг с диаметром $d=3$ см, замеряем ниткой длину окружности, получаем $l=9,3$ см. Находим отношения длины окружности к диаметру, тогда $\pi \approx \frac<9,3><3>=3,1$ .

В каких формулах используется число

Площадь круга радиуса $r : S=\pi r^<2>$

Длина окружности радиуса $r : l=2 \pi r$

Площадь сектора с угловой величиной дуги $\alpha^ <\circ>: S_<\operatorname<сект>>=\frac <\pi r^<2>\alpha><360>$

Объем цилиндра: $V=\pi R^ <2>H$

Площадь боковой и полной поверхности цилиндра:

$S_<бок>=2 \pi R H$ и $S_<цил>=2 \pi R H+2 \pi R^<2>$

Площадь боковой поверхности конуса: $S_<бок>=\pi R L$

Площадь сферы: $S=4 \pi R^<2>$

Объем шара: $V=\frac<4> <3>\pi R^<3>$

Задание. Вычислить объем и полную площадь поверхности цилиндра, если радиус основания цилиндра $R=2$ см, а высота цилиндра $H=5$ см .

Решение. Объем цилиндра найдем по формуле

полагая $\pi=3,14$ и подставляя заданные значения, получим

$V=3,14 \cdot 2^ <2>\cdot 5=3,14 \cdot 4 \cdot 5=62,8$ (см 3 )

Для нахождения полной площади поверхности цилиндра воспользуемся формулой

подставляя заданные значения, имеем

$S_<цил>=2 \cdot 3,14 \cdot 2 \cdot 5+2 \cdot 3,14 \cdot 2^<2>=87,59$ (см 2 )

Март, четырнадцатое. Как вычислить число Пи

Еще в древности люди заметили, что отношение длины окружности к ее диаметру близко к трем, но не точно три, а чуть больше. Причем это отношение не зависит ни от диаметра окружности, ни от места, где она проведена. В те времена это отношение, названное впоследствии числом Пи, не сильно выделялось из множества других чисел, которые можно определить опытным путем. Таких как отношение диагонали квадрата к его стороне или отношение площадей квадрата и равностороннего треугольника с такой же, как у квадрата, стороной.

Фото: depositphotos

Отцом числа Пи следует считать Архимеда, которого называют автором удивительных открытий, что отношение Пи не приближенно, а в точности связывает не только диаметр и длину окружности, но и площадь круга и квадрат его радиуса, объем шара и куб его радиуса и даже площадь сферы и квадрат ее радиуса. То есть Архимед доказал известные всем со школы формулы: L = 2πr, S1 = πr2, V = 4/3 x πr3 и S2 = 4πr2.

Архимеду принадлежит также первая не опытная, а теоретическая (методом построения описанных и вписанных в круг многоугольников) оценка числа Пи: 3 + (10/71) < < 3 + (1/7). То есть он нашел первые три десятичные цифры числа Пи = 3,14. что и определило сегодняшнюю дату.

Так Архимед представлял себе вычисление площади круга

Впоследствии математики поняли, что число Пи связывает объем многомерного шара и степень его радиуса при любой размерности пространства (с рациональным множителем, уже зависящим от размерности: для 2х измерений это 1, для 3х измерений — 4/3). Таким образом, число Пи не изменится даже для исследователей, живущих в пространствах с другим числом измерений.

Однако отношение длины окружности к ее диаметру меняется при искривлении пространства и совпадает с нашей константой только в «плоском» однородном случае, проще говоря в пространстве, для которого справедлива теорема Пифагора. Как утверждает теория относительности, рядом с горизонтом событий черной дыры пространство сильно искривлено. Неужели цивилизация, которой повезло возникнуть в подобном месте, может не подозревать о существовании константы Пи?

Оказывается, число Пи неожиданно возникает просто из натурального ряда чисел. Английский математик Джон Валлис, старший современник Исаака Ньютона, открыл удивительную формулу:

Многоточие в конце формулы означает, что если мы перемножим достаточно много четных чисел в числителе и нечетных в знаменателе, то получим результат, сколь угодно близкий к числу Пи /2.

Еще более удивительную для непосвященных формулу с участием числа вывел великий математик Леонард Эйлер, бóльшую часть своей долгой научной карьеры проработавший в Петербургской академии наук:

Эта формула была признана «самой красивой теоремой в математике». Здесь e = 2,71828. — константа Эйлера, i = √-1 — мнимая единица и Пи — конечно, наше число Пи. На самом деле формулаЭйлера эквивалентна сразу двум равенствам:

где n! = 1×2 x 3···(n — 1) x n.

Конечно, затруднительно вычислять Пи из этих формул как корень уравнения бесконечной степени. А уравнения конечной степени с целыми коэффициентами, корнем которого было бы число Пи, не существует! Это доказал в конце XIX века немецкий математик Фердинанд фон Линдеман, решив заодно знаменитую античную проблему «квадратуры круга». То есть он показал, что, имея отрезок, равный диаметру круга, невозможно только с помощью циркуля и линейки построить квадрат, площадь которого равна площади круга.

Другая знаменитая формула Эйлера:

уже пригодна для приближенного вычисления числа Пи. И даже более подходит для этой цели, чем формула великого немецкого философа и математика Готфрида Лейбница:

Впоследствии выяснилось, что эту формулу задолго до Лейбница вывел индийский математик и астроном Мадхава. Формула Лейбница на самом деле является частным случаем формулы разложения арктангенса в ряд Тейлора:

при подстановке x = 1. Долгое время наиболее удобным для вычисления приближений числа Пи считалось равенство английского математика Джона Мэчина, который был секретарем Лондонского королевского общества, когда его возглавлял Исаак Ньютон. Вот это равенство Мэчина:

Для вычисления числа Пи по формуле Мэчина нужно сначала вычислить arctg1/5 и arctg1/239 с помощью приведенного выше разложения арктангенса в ряд Тейлора, которое, по-видимому, впервые нашел сам Исаак Ньютон.

Число возникает в математике в самых неожиданных местах. Например, математик Абрахам де Муавр (бежавший в Англию из Франции, где его преследовали как гугенота) обнаружил формулу:

Теперь ее называют формулой Эйлера-Пуассона, или интегралом Гаусса.

Сам Муавр, а также выдающиеся математики Пьер-Симон де Лаплас и Карл Фридрих Гаусс в разной степени общности и строгости доказали, что функция Φ(x) = e-x2/2/√2 (из формулы Эйлера-Пуассона следует, что интеграл от функции Φ по вещественной прямой равен 1) является плотностью нормального, или гауссова, распределения, которое является предельным для средних арифметических последовательности независимых случайных величин.

Гистограмма близка к графику функции Φ

Это означает, например, если мы будем n серий по m раз подбрасывать монету, вычислять разность между числом выпавших «орлов» и «решек» и записывать результат в таблицу, то при росте n и m построенная по таблице гистограмма будет все больше походить на график функции Φ. Эта теорема служит фундаментом для современной квантовой физики, обеспечивая возможность извлекать из многократных измерений случайных событий строгие закономерности.

Казалось бы, тысячелетняя история исследований позволяет предположить, что мы не упустили ничего важного о числе. Однако в 1997 году, совсем недавно в историческом масштабе, произошла сенсация. Саймон Плафф нашел новое представление для числа в виде ряда:

которое не только требует гораздо меньше слагаемых для вычисления числа с заранее заданной точностью, но и позволяет вычислить любую цифру в двоичном представлении числа Пи, не вычисляя предыдущие цифры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *